B.-T. Zhang and Y.-Y. Choi, Communication: Humans, Animals, and Artificial Intelligence (Korean translation of "Menschen, Tiere und Max: Natuerliche Kommunikation und kuenstliche Intelligenz" by I. Wachsmuth, Springer, 2012), Seoul National University Press, 2014.
B.-T., Zhang, Communication as moving target tracking: Dynamic Bayesian inference with an action-perception-learning cycle, In Wachsmuth, Ipke, Jan de Ruiter, Petra Jaecks and Stefan Kopp (eds.), Alignment in Communication. Towards a New Theory of Communication, Chapter 7, John Benjamins, 2013.
[PDF]
PRICAI 2010: Trends in Artificial Intelligence, 11th Pacific Rim International Conference on Artificial Intelligence, Proceedings,B.-T. Zhang and M. A. Orgun (Eds.), Springer, 2010.
Intelligent and Evolutionary Systems,
Gen, M., Green, D., Katai, O., McKay, B., Zhang, B.-T., Namatame, A., Sarker, R.A. (Eds.),
Springer-Verlag, 2009.
Supervised learning methods for microRNA studies,
Byoung-Tak Zhang and Jin-Wu Nam,
Machine Learning in Bioinformatics,
Chapter 16, John Wiley & Sons, 2008.
Evolutionary multiobjective optimization for DNA sequence design,
S.-Y. Shin, I.-H. Lee, B.-T. Zhang,
Multi-Objective Optimization in Computational Intelligence: Theory and Practice,
Chapter 9, Information Science Reference, 2008.
Combining information-based supervised and unsupervised feature selection,
Sang-Kyun Lee, Seung-Joon Yi, Byoung-Tak Zhang,
Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing),
Chapter 24, pp. 489-496, Springer-Verlag, 2006.
Biocomputer: constructing a computer using biotechnology,
B.-T. Zhang,
Stories of Biotechnology (¹Ì·¡¸¦ µé·ÁÁÖ´Â »ý¹°°øÇÐ À̾߱â, in Korean),
Chapter 7-2, Thinking Tree, 2006.
A unified Bayesian framework for evolutionary learning and optimization,
Zhang, B.-T.,
Advances in Evolutionary Computing,
Chapter 15, pp. 393-412, Springer-Verlag, 2003.
[PDF]
Bayesian network classifiers for gene expression analysis,
Zhang, B.-T. and Hwang, K.-B.,
A Practical Approach to Microarray Data Analysis,
Chapter 8, pp. 150-165, Kluwer Academic Publishers, 2003.
Analysis of gene expression profiles and drug activity patterns by clustering and Bayesian network learning,
Chang, J.-H., Hwang, K.-B., and Zhang, B.-T.,
Methods of Microarray Data Analysis II,
Chapter 11, pp. 169-184, Kluwer Academic Publishers, 2002.
[PDF]
Applying machine learning techniques to analysis of gene expression data: cancer diagnosis,
Hwang, K.-B., Cho, D.-Y., Park, S.-W., Kim, S.-D., and Zhang, B.-T.,
Methods of Microarray Data Analysis,
Chapter 12, pp. 167-182, Kluwer Academic Publishers, 2002.
[PDF]
Co-evolutionary fitness switching: learning complex collective behaviors using genetic programming,
Zhang, B.-T. and Cho, D.-Y.,
Advances in Genetic Programming,
vol. 3, Chapter 18, pp. 425-445, MIT Press, 1999.
[PDF]
Adaptive fitness functions for dynamic growing/pruning of program trees,
Zhang, B.-T. and Mühlenbein., H.,
Advances in Genetic Programming,
vol. 2, Chapter 12, pp. 241-256, MIT Press, 1996.
This page is maintained by Byoung-Hee Kim
.
Last update: January 20, 2015.