Artificial Intelligence
Chapter 1

Introduction

1.1 What Is AI? (1)

- Artificial Intelligence (AI)
 - Intelligent behavior in artifacts
 - “Designing computer programs to make computers smarter”
 - “Study of how to make computers do things at which, at the moment, people are better”
- Intelligent behavior
 - Perception, reasoning, learning, communicating, acting in complex environments
- Long term goals of AI
 - Develop machines that do things as well as humans can or possibly even better
 - Understand behaviors

1.1 What Is AI? (2)

- Can machines think?
 - Depend on the definitions of “machine”, “think”, “can”
- “Can”
 - Can machines think now or someday?
 - Might machines be able to think theoretically or actually?
- “Machine”
 - E6 Bacteriophage: Machine made of proteins
 - Searle’s belief
 - What we are made of is fundamental to our intelligence
 - Thinking can occur only in very special machines – living ones made of proteins

1.1 What Is AI? (3)

Figure 1.1 Schematic Illustration of E6 Bacteriophage
1.1 What Is AI? (4)

- “Think”
 - Turing test: Decide whether a machine is intelligent or not
 - Interrogator (C): determine man/woman
 - A: try and cause C to make the wrong identification
 - B: help the interrogator
 - Examples: ELIZA [Weizenbaum], JULIA [Mauldin]

Room1
Man (A), Woman (B)

Room2
Interrogator (C)

1.2 Approaches to AI (1)

- Two main approaches: symbolic vs. subsymbolic

 1. Symbolic
 - Classical AI (“Good-Old-Fashioned AI” or GOFAI)
 - Physical symbol system hypothesis
 - Logical, top-down, designed behavior, knowledge-intensive

 2. Subsymbolic
 - Modern AI, neural networks, evolutionary machines
 - Intelligent behavior is the result of subsymbolic processing
 - Biological, bottom-up, emergent behavior, learning-based

- Brain vs. Computer
 - Brain: parallel processing, fuzzy logic
 - Computer: serial processing, binary logic

1.2 Approaches to AI (1)

- Symbolic processing approaches
 - Physical symbol system hypothesis [Newell & Simon]
 - A physical symbol system has the necessary and sufficient means for general intelligence action
 - Physical symbol system: A machine (digital computer) that can manipulate symbolic data, rearrange lists of symbols, replace some symbols, and so on.

Logical operations: McCarthy’s “advice-taker”
 - Represent “knowledge” about a problem domain by declarative sentences based on sentences in first-order logic
 - Logical reasoning to deduce consequences of knowledge
 - Applied to declarative knowledge bases
1.2 Approaches to AI (2)

- Top-down design method
 - Knowledge level
 - Top level
 - The knowledge needed by the machine is specified
 - Symbol level
 - Represent knowledge in symbolic structures (lists)
 - Specify operations on the structures
 - Implementation level
 - Actually implement symbol-processing operations

1.2 Approaches to AI (3)

- Subsymbolic processing approaches
 - Bottom-up style
 - The concept of signal is appropriate at the lowest level
 - Animat approach
 - Human intelligence evolved only after a billion or more years of life on earth
 - Many of the same evolutionary steps need to make intelligence machines
 - Symbol grounding
 - Agent’s behaviors interact with the environment to produce complex behavior
 - Emergent behavior
 - Functionality of an agent: emergent property of the intensive interaction of the system with its dynamic environment

1.2 Approaches to AI (4)

- Well-known examples of machines coming from the subsymbolic school
 - Neural networks
 - Inspired by biological models
 - Ability to learn
 - Evolution systems
 - Crossover, mutation, fitness
 - Situated automata
 - Intermediate between the top-down and bottom-up approaches

1.3 Brief History of AI (1)

<table>
<thead>
<tr>
<th>Symbolic AI</th>
<th>Biological AI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1943: Production rules</td>
<td>1943: McCulloch-Pitt’s neurons</td>
</tr>
<tr>
<td>1956: “Artificial Intelligence”</td>
<td>1959: Perceptron</td>
</tr>
<tr>
<td>1958: LISP AI language</td>
<td>1965: Cybernetics</td>
</tr>
<tr>
<td>1965: Resolution theorem proving</td>
<td>1966: Simulated evolution</td>
</tr>
<tr>
<td>1966: PROLOG language</td>
<td>1966: Self-reproducing automata</td>
</tr>
<tr>
<td>1970: STRIPS planner</td>
<td>1975: Genetic algorithm</td>
</tr>
<tr>
<td>1973: MYCIN expert system</td>
<td>1982: Neural networks</td>
</tr>
<tr>
<td>1982-92: Fifth generation computer systems project</td>
<td>1986: Connectionism</td>
</tr>
<tr>
<td>1994: Intelligent agents</td>
<td>1992: Genetic programming</td>
</tr>
</tbody>
</table>

[Zhang 98]
1.3 Brief History of AI (2)

- 1940–1950
 - Programs that perform elementary reasoning tasks
 - Alan Turing: First modern article dealing with the possibility of mechanizing human-style intelligence
 - McCulloch and Pitts: Show that it is possible to compute any computable function by networks of artificial neurons.

- 1956
 - Coined the name “Artificial Intelligence”
 - Frege: Predicate calculus = Begriffsschrift = “concept writing”
 - McCarthy: Predicate calculus: language for representing and using knowledge in a system called “advice taker”
 - Perceptron for learning and for pattern recognition [Rosenblatt]

1.3 Brief History of AI (3)

- 1960–1970
 - Problem representations, search techniques, and general heuristics
 - Simple puzzle solving, game playing, and information retrieval
 - Chess, Checkers, Theorem proving in plane geometry
 - GPS (General Problem Solver)

1.3 Brief History of AI (4)

- Late 1970 ~ early 1980
 - Development of more capable programs that contained the knowledge required to mimic expert human performance
 - Methods of representing problem-specific knowledge
 - DENDRAL
 - Input: chemical formula, mass spectrogram analyses
 - Output: predicting the structure of organic molecules
 - Expert Systems
 - Medical diagnoses

1.3 Brief History of AI (5)

- DEEP BLUE (1997/5/11)
 - Chess game playing program

- Human Intelligence
 - Ability to perceive/analyze a visual scene
 - Roberts
 - Ability to understand and generate language
 - Winograd: Natural Language understanding system
 - LUNAR system: answer spoken English questions about rock samples collected from the moon
1.3 Brief History of AI (6)

- Neural Networks
 - Late 1950s: Rosenblatt
 - 1980s: important class of nonlinear modeling tools
- AI research
 - Neural networks + animat approach: problems of connecting symbolic processes to the sensors and efforts of robots in physical environments
- Robots and Softbots (Agents)

1.4 Plan of the Book

- Agent in grid-space world
- Grid-space world
 - 3-dimensional space demarcated by a 2-dimensional grid of cells “floor”
- Reactive agents
 - Sense their worlds and act in them
 - Ability to remember properties and to store internal models of the world
 - Actions of reactive agents: \(f(\text{current and past states of their worlds}) \)

Figure 1.2 Grid-Space World

- Model
 - Symbolic structures and set of computations on the structures
 - Iconic model
 - Involve data structures, computations
 - Iconic chess model: complete
 - Feature based model
 - Use declarative descriptions of the environment
 - Incomplete
1.4 Plan of the Book

- Agents can make plans
 - Have the ability to anticipate the effects of their actions
 - Take actions that are expected to lead toward their goals
- Agents are able to reason
 - Can deduce properties of their worlds
- Agents co-exist with other agents
 - Communication is an important action

- Autonomy
 - Learning is an important part of autonomy
 - Extent of autonomy
 - Extent that system’s behavior is determined by its immediate inputs and past experience, rather than by its designer’s.
 - Truly autonomous system
 - Should be able to operate successfully in any environment, given sufficient time to adapt