14.1 A New Rule of Inference: Resolution

- Literal: either an atom (positive literal) or the negation of an atom (negative literal).
- Ex: Clause is \([P, Q, \neg R]\) wff (equivalent to \(P \lor Q \lor \neg R\)).
- Ex: Empty clause \(\{\}\) is equivalent to \(F\).

14.1.2 Resolution on Clauses (1)

- From \(\{\lambda\} \cup \Sigma_i\) and \(\{\overline{\lambda}\} \cup \Sigma_2\).
- We can infer \(\Sigma_1 \cup \Sigma_2\).
 - called the resolvent of the two clauses
 - this process is called resolution
- Examples:
 - \(R \lor P\) and \(\neg P \lor Q \Rightarrow R \lor Q\): chaining
 - \(R\) and \(\neg R \lor P \Rightarrow P\): modus ponens
 - Chaining and modus ponens is a special case of resolution.
14.1.2 Resolution on Clauses (2)

- \(P \lor Q \lor R \lor S \) with \(\neg P \lor Q \lor W \) on \(P \rightarrow Q \lor R \lor S \lor W \)
- \(P \lor Q \lor \neg R \) and \(P \lor W \lor \neg Q \lor R \)
 - Resolving them on \(Q \): \(P \lor \neg R \lor R \lor W \)
 - Resolving them on \(R \): \(P \lor \neg Q \lor Q \lor W \)
 - Since \(\neg R \lor R \) and \(\neg Q \lor Q \) are True, the value of each of these resolvents is True.
 - We must resolve either on \(Q \) or on \(R \).
 - \(P \lor W \) is not a resolvent of two clauses.

14.1.3 Soundness of Resolution

- If \(\Sigma_1 \cup \Sigma_2 \) and \(\{\neg \lambda\} \cup \Sigma_3 \) both have True, \(\Sigma_1 \cup \Sigma_3 \) is true.
- Proof: reasoning by cases
 - Case 1
 - If \(\lambda \) is True, \(\Sigma_1 \) must True in order for \(\{\neg \lambda\} \cup \Sigma_3 \) to be True.
 - Case 2
 - If \(\lambda \) is False, \(\Sigma_1 \) must True in order for \(\{\neg \lambda\} \cup \Sigma_3 \) to be True.
 - Either \(\Sigma_1 \) or \(\Sigma_3 \) must have value True.
 - \(\Sigma_1 \cup \Sigma_2 \) has value True.

14.2 Converting Arbitrary WFFs to Conjunctions of Clauses

- Ex: \(\neg (P \supset Q) \lor (R \supset P) \)
 1. \(\neg (P \lor Q) \lor (\neg R \lor P) \) Equivalent Form
 Using \(\lor \)
 2. \((P \land \neg Q) \lor (\neg R \lor P) \) DeMorgan
 3. \((P \lor \neg R \lor P) \land (\neg Q \lor \neg R \lor P) \) Distributive Rule
 4. \((P \lor \neg R) \land (\neg Q \lor \neg R \lor P) \) Associative Rule

- Usually expressed as \(\{(P \lor \neg R), (\neg Q \lor \neg R \lor P)\} \)

14.3 Resolution Refutations

- Resolution is not complete.
 - For example, \(P \land R \leftrightarrow P \lor R \)
 - We cannot infer \(P \lor R \) using resolution on the set of clauses \(\{P, R\} \) (because there is nothing that can be resolved)
 - We cannot use resolution directly to decide all logical entailments.
Resolution Refutation Procedure

1. Convert the wffs in Δ to clause form, i.e. a (conjunctive) set of clauses.
2. Convert the negation of the wff to be proved, $\neg \omega$, to clause form.
3. Combine the clauses resulting from steps 1 and 2 into a single set, Γ
4. Iteratively apply resolution to the clauses in Γ and add the results to Γ either until there are no more resolvents that can be added or until the empty clause is produced.

(C) 2000 SNU CSE Artificial Intelligence Lab (SCAI)

Completeness of Resolution Refutation

- Completeness of resolution refutation
 - The empty clause will be produced by the resolution refutation procedure if $\Delta \vdash \neg \omega$.
 - Thus, we say that propositional resolution is refutation complete.
- Decidability of propositional calculus by resolution refutation
 - If Δ is a finite set of clauses and if $\Delta \vdash \neg \omega$,
 - Then the resolution refutation procedure will terminate without producing the empty clause.

(C) 2000 SNU CSE Artificial Intelligence Lab (SCAI)

A Resolution Refutation Tree

Given:
1. BAT_OK
2. MOVE
3. BAT_OK \land LIFTABLE \Rightarrow MOVE
Clause form of 3:
4. BAT_OK \lor LIFTABLE \lor MOVE
Negation of goal:
5. LIFTABLE
Perform resolution:
6. BAT_OK \lor MOVE
 (from resolving 5 with 4)
7. BAT_OK (from 6, 2)
8. Nil (from 7, 1)

Figure 14.1
A Resolution Refutation Tree

(C) 2000 SNU CSE Artificial Intelligence Lab (SCAI)

14.4 Resolution Refutations Search Strategies

- Ordering strategies
 - Breadth-first strategy
 - Depth-first strategy
 - with a depth bound, use backtracking.
- Unit-preference strategy
 - prefer resolutions in which at least one clause is a unit clause.
- Refinement strategies
 - Set of support
 - Linear input
 - Ancestry filtering

(C) 2000 SNU CSE Artificial Intelligence Lab (SCAI)
Refinement Strategies

- Set of support strategy
 - Allows only those resolutions in which one of the clauses being resolved is in the set of support, i.e., those clauses that are either clauses coming from the negation of the theorem to be proved or descendants of those clauses.
 - Refutation complete

- Linear input strategy
 - at least one of the clauses being resolved is a member of the original set of clauses.
 - Not refutation complete

- Ancestry filtering strategy
 - at least one member of the clauses being resolved either is a member of the original set of clauses or is an ancestor of the other clause being resolved.
 - Refutation complete

14.5 Horn Clauses

- A Horn clause: a clause that has at most one positive literal.
 - Ex: $P, \neg P \lor Q, \neg P \lor \neg Q \lor R, \neg P \lor \neg R$

- Three types of Horn clauses.
 - A single atom: called a “fact”
 - An implication: called a “rule”
 - A set of negative literals: called “goal”

- There are linear-time deduction algorithms for propositional Horn clauses.