2.1 Perception and Action

- **Stimulus-response (S-R) agents**
 - Machines that have no internal state and that simply react to immediate stimuli in their environments
 - Based on motor response to rather simple functions of immediate sensory inputs
 - Example: Machina speculatrix, Braitenberg machine
A Robot in a Two-Dimensional Grid World (2)

- Sensory inputs: $s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8$
- Robot movements
 - *north* moves the robot one cell up in the cellular grid
 - *east* moves the robot one cell to the right
 - *south* moves the robot one cell down
 - *west* moves the robot one cell to the left
- Division of processes
 - Perception processing and action computation

A Robot in a Two-Dimensional Grid World (3)

- Perceptual processing
 - produces feature vector X
 - numeric features: real number
 - categorical features: categories

- Action computation
 - selects an action based on feature vector

A Robot in a Two-Dimensional Grid World (4)

- The split between perception and action is arbitrary
- The split is made in such a way that the same features would be used repeatedly in a variety of tasks to be performed
- The computation of features from sensory signals can be regarded as often used library routines
 - needed by many different action functions
- The next problems
 - (1) converting raw sensory data into a feature vector
 - (2) specifying an action function

Perception

- For the robot task, there are four binary-valued features of the sensory values that are useful for computing an appropriate action x_1, x_2, x_3, x_4
- Perceptual processing might occasionally give erroneous, ambiguous, or incomplete information about the robot’s environment
 - Such errors might evoke inappropriate actions
- For robots with more complex sensors and tasks, designing appropriate perceptual processing can be challenging
Action

- Specifying a function that selects the appropriate boundary-following action

 \[
 \begin{align*}
 &\text{if } x_1 = 1 \text{ and } x_2 = 0, \text{ move east} \\
 &\text{if } x_2 = 1 \text{ and } x_3 = 0, \text{ move south} \\
 &\text{if } x_3 = 1 \text{ and } x_4 = 0, \text{ move west} \\
 &\text{if } x_4 = 1 \text{ and } x_1 = 0, \text{ move north}
 \end{align*}
 \]

- None of the features has value 1, the robot can move in any direction until it encounters a boundary.

Boolean Algebra

- Boolean algebra is a convenient notation for representing Boolean functions

 - Rules for Boolean algebra
 - Rules
 - Commutative: \(x \cdot y = y \cdot x, \quad x + y = y + x \)
 - Associative: \(x \cdot (y \cdot z) = (x \cdot y) \cdot z, \quad x + (y + z) = (x + y) + z \)
 - DeMorgan’s law: \(\overline{x \cdot y} = \overline{x} + \overline{y}, \quad \overline{x + y} = \overline{x} \cdot \overline{y} \)
 - Distributive law: \(x \cdot (y + z) = x \cdot y + x \cdot z, \quad x + (y \cdot z) = (x + y) \cdot (x + z) \)

Classes and Forms of Boolean Functions

- A conjunction of literals is a monomial:
 \[\lambda_1 \lambda_2 \ldots \lambda_k \]
 - The conjunction itself is called a term
 - Bound of the number of monomials of size \(k \) or less:
 \[\sum_{i=0}^{k} \binom{2n}{i} = \binom{2n+k}{k} \]
 - A clause or a disjunction of literals:
 \[\lambda_1 + \lambda_2 + \ldots + \lambda_k \]
 - Terms and clauses are duals of each other
 - Disjunctive normal form (DNF): disjunction of terms
 - \(k \)-term DNF: disjunction of \(k \) terms
 - Conjunctive normal form (CNF): conjunction of clauses
 - \(k \)-clause CNF: the size of its largest clause is \(k \)

2.2 Representing and Implementing Action Functions:

Production Systems (1)

- Production system comprises an ordered list of rules called production rules or productions

 - \(c \rightarrow a \), where \(c \) is the condition part and \(a \) is the action part
 - Production system consists of a list of such rules
 - Condition part
 - Can be any binary-valued function of the features
 - Often a monomial
 - Action part
 - Primitive action, a call to another productive system, or a set of actions to be executed simultaneously
Production Systems (2)

- Production system representation for the boundary following routine
 - An example of a durative systems-system that ends

- Teleo-reactive (T-R) programs
 - Each properly executed action in the ordering works toward achieving a condition higher in the list
 - Usually easy to write, given an overall goal for an agent
 - Quite robust: actions proceed inexorably toward the goal
 - Can have parameters that are bound when the programs are called
 - Can call other T-R programs and themselves recursively

Networks (1)

- Threshold logic unit (TLU)
 - Circuit consists of networks of threshold elements or other elements that compute a nonlinear function of a weighted sum of their inputs

- Linearly separable functions
 - The boolean functions implementable by a TLU
 - Many boolean functions are linearly separable
 - Exclusive-or function of two variables is an example of not linearly separable

Networks (2)

- An implementation of the boundary following production rule
 - $x_1 \cdot x_2 \rightarrow \text{north}$
 - $x_2 \cdot x_4 \rightarrow \text{west}$
 - $x_2 \cdot x_3 \rightarrow \text{south}$
 - $x_1 \cdot x_2 \rightarrow \text{east}$
 - $1 \rightarrow \text{north}$

- Neural network
 - Network of TLUs
 - For more complex problems
 - TLUs are thought to be simple models of biological neurons
 - Connection weights
 - Threshold value

Networks (3)

- A simple network structure with repeated combination of inverters and AND gates can be used to implement any T-R program
Networks (4)

- **TISA (Test, Inhibit, Squelch, Act)**
 - Each rule in the T-R program is implemented by a subcircuit (called a TISA) with two inputs and two outputs.
 - One TLU in the TISA computes the conjunction of one of its input with the complement of the other input; the other TLU computes the disjunction of its two inputs.
 - The inhibit input is 1 when none of the rules above has a true condition.
 - The test input is 1 only if the condition C_i corresponding to this rule is satisfied.
 - The act output is 1 when the test input is 1 and the inhibit input is 0.
 - The squelch output is 1 when either the test input or the inhibit input is 1.

The Subsumption Architecture (1)

- Proposed by Rodney Brooks
- The general idea: An agent’s behavior is controlled by a number of “behavior modules.”

The Subsumption Architecture (2)

- If the sensory inputs satisfy a precondition specific to that module, then a certain behavior program, also specific to that module, is executed.
- One behavior module can subsume another.
- Complex behaviors can emerge from the interaction of a relatively simple reactive machine with complex environment.