7.1 Memory Versus Computation

- Memory-based implementation
 - The action is selected by designer.
 - Agent would require large amounts of memory.
 - Designer would require foresight in anticipating appropriate reactions for all possible situations.

- Computation-based implementation
 - It will reduce the agent’s memory requirements and the burden on the designer.
 - The designer specify the computation instead of all possible situations.
 - These computations will take time

7.2 State-Space Graphs

- An example
 - Grid-space world containing 3 toy blocks (A, B, C).
 - All initially are on the floor.
 - The task is to stack blocks so that A is on top of B and B is on top of C and C is on the floor.
 - Instances of a schema
 - move(x, y) – x can be A, B, C, y can be A, B, C and floor.
 - Operators
 - move(A, C), move(A, B) …
7.2 State-Space Graphs

- Directed graph
 - A most useful structure for keeping track of the effects of several alternative sequences of actions.
 - Node
 - Representations of the individual worlds
 - Iconic or feature
 - Arc
 - Operators

- State-space graph
 - A graph representing all of the possible actions and situations
 - Any of the nodes in the graph can be taken to represent a goal situations.
7.2 State-Space Graphs

- **Plan**
 - A sequence of the operators labeling the arcs along a path to a goal.
 - Planning is searching for such a sequence.
- **Projecting**
 - The process of predicting a sequence of world states resulting from a sequence of actions.

(c) 2000 SNU CSE Artificial Intelligence Lab (SCAI) 9

7.3 Searching Explicit State Spaces

- **Search methods for explicit graphs involve** propagating markers over the nodes of the graph.
 - Label the start node with a 0.
 - Propagate successively larger integers out in waves along the arcs until an integer hits the goal.
 - Trace a path back from the goal to the start along a decreasing sequence of numbers.
- **Expansion**
 - Puts marks on all of the marked node’s unmarked neighbors.

(c) 2000 SNU CSE Artificial Intelligence Lab (SCAI) 10

7.4 Feature-Based State Spaces

- Feature-Based graphs need a way to describe how an action affects features.
 - STRIPS [Fikes & Nilsson, 1971]
 - Define an operator by 3 lists
 - Precondition list specifies those features that must have value 1 and 0 in order that the action can be applied.
 - Delete list specifies those features that will have their values changed from 1 to 0.
 - Add list specifies those features that will have their values changed from 0 to 1.
7.4 Feature-Based State Spaces

- Neural Networks
 - Train a neural network to learn to predict the value of a feature vector at time \(t \) from its value at time \(t-1 \) and the action taken at time \(t-1 \). [Jordan & Rumelhart 1992]
 - After training, the prediction network can be used to compute the feature vectors that would result from various actions.
 - Computed features in turn could be used as new inputs to the network to predict the feature vector two steps ahead, and so on.

7.5 Graph Notation

- A graph consists of a set of nodes.
 - A graph consists of a set of nodes.
 - Arcs connect certain pairs of nodes.
 - A directed graph
 - Arcs are directed from one member of the pair to the other.
 - Successor (child)
 - Parent
 - An undirected graph
 - Edges are undirected arcs.
 - Contain only edges.
7.5 Graph Notation

- Tree is a special case of a graph.
 - A directed tree
 - A root node has no parent.
 - Each has exactly one parent except root.
 - A leaf node has no successors.
 - Depth of any node is defined to be the depth of its parent plus 1. (The root node is of depth zero.)
 - An undirected tree
 - There is only one path along edges between any pair of nodes.

- A path of length k from node n_i to node n_k.
 - A sequence of nodes with each n_{i+j} a successor of n_i for $i=1, \ldots, k-1$

- Accessible
 - Exist a path from one node to other node.

- Descent, Ancestor

- Optimal path
 - Path having minimal cost between two nodes.

- A spanning tree
 - A tree including all nodes in a graph