Ch 5. Perception and Encoding

Summarized by
Y.-J. Park, M.-H. Kim, and B.-T. Zhang
Biointelligence Laboratory, Seoul National University
http://bi.snu.ac.kr/

Disorders of Perception: A Case Study

Contents
- Overview of Neural Pathways
- Parallel Processing in the Visual System
- Cortical Visual Areas
- Deficits in Feature Perception
- Independent or Convergent Pathways
- Dissociations of Cortical and Subcortical Visual Pathways
- Auditory Perception
- Summary

Overview of Neural Pathways
The Eye, Retina, and Receptors

- As light passes through the lens of the eye, the image is inverted and focused on the retina.
- Rods are sensitive to low levels of light stimulation at night.
- Cones are most active during daytime vision and essential for color.
- Rods and cones have differential distribution.

Spectral sensitivity functions for rods and the three types of cone.

From the Eye to the Central Nervous System

- The optic fibers from the temporal half of the retina project ipsilaterally, while the nasal fibers cross over at the optic chiasm.
- In this way, the input from each visual field is projected to the primary visual cortex in the contralateral hemisphere after the fibers synapse in the lateral geniculate nucleus (LGN) 90% (geniculo-cortical pathway).
- A small percentage 10% of visual fibers of the optic nerve terminate in the superior colliculus and pulvinar nucleus.
Parallel Processing in the Visual System

- Organization of the Lateral Geniculate Nucleus (LGN)
 - The LGN contains six well-defined layers
 - Three of the layers receive input from one retina while the other three receive input from the other retina
 - The multilayered system is not simply redundant

Parallel Processing in the Visual System

- Multiple Pathways in the Visual Cortex
 - Primary visual cortex (or Striate Cortex)
 - It is located medially and buried below the superficial surface of the cortex along the calcarine sulcus

Parallel Processing in the Visual System

- Organization of the Lateral Geniculate Nucleus (LGN)
 - The bottom two layers are referred to as the magnocellular system (M system)
 - Smaller cells in the upper four layers constitute the parvocellular system (P System)
 - 80% of the LGN neurons are part of the P system

Parallel Processing in the Visual System

- Multiple Pathways in the Visual Cortex
 - The segregation of M and P pathways is maintained in the cortex
 - Axons from both regions terminate in layer 4 of the striate cortex
 - While all of the inputs terminate in layer 4, the parvocellular inputs synapse on intracortical neurons that terminate in layers 2 and 3
Cortical Visual Areas

- Directional and speed tuning of a neuron from area MT
- Top: A rectangle was moved through the receptive field of this cell in various directions
- Bottom: The graph shows speed tuning for a cell in MT

Cellular Correlates of Visual Features

- This table summarizes stimulus variations used in neurophysiological studies to identify the representational characteristics of cells in the M, P-blob, and P-interblob pathways
- Neurons in the M pathway are movement sensitive and color insensitive
- In contrast, neurons in the P-blob pathway are highly selective to color and are minimally responsive to movement or changes in orientation
Cortical Visual Areas

- Imaging Visual Areas in Humans
 - Positron Emission Tomography (PET)

 (a) Mondrian display
 (b) Pattern of moving squares

- Analysis and Representation of Visual Features
 - Illusions and Feature Independence

 (a) Illusory motion is perceived when one is viewing the Enigma pattern, and activation is observed in area MT.
 (b) Color aftereffects are produced after staring at the bright green patch.
 (c) Activation in a visual region anterior to V4 is shown graphically.

Deficits in Feature Perception

- Deficits in Color Perception: Achromatopsia
 - Achromatopsia are disorders of color perception that arise from disturbances of the central nervous system
 - MRI scans showing a small lesion encompassing V4
 - Color perception thresholds in each visual quadrant

- Deficits in Color Perception: Achromatopsia
 - Stimuli used to assess form perception in the patient with damage to area V4.
 - On basic tests of luminance (a), orientation (b), and motion (c), the patient’s perceptual threshold was similar in all four quadrants.
 - Thresholds for illusory contours (d), and complex shapes (e) were elevated in the upper left quadrant.
Independent or Convergent Pathways

- The visual system contains multiple pathways, each specialized to abstract specific information.
- Yet the outputs from these systems are designed to complement each other.
- Lesion studies of animals have brought into question the notion that the processing of feature like depth, color, and orientation depends solely on a single pathway.
- Prefer the term concurrent processing

Dissociations of Cortical and Subcortical Visual Pathways

- Spatial Orientation and Object Perception in the Hamster
 - To turn their head in the direction of a sunflower seed and to run down a maze and to enter the door behind which a sunflower seed was hidden
 - This study provide compelling evidence for dissociable functions of the hamsters’ superior colliculus and visual cortex

Auditory Perception
Auditory Perception

- **Overview of the Auditory Pathways**
 - Like as photoreceptors, hair cells of the **cochlea** are the primary receptors.
 - Receptive field of hair cells refer to a coding of sound frequency.
 - Hair cells at the thick end, or base of the cochlea, are activated by high-frequency sound; cells at the opposite end, or apex, are activated by low-frequency sound.

Auditory Perception

- **Overview of the Auditory Pathways**
 - Cells in one region of an auditory area will respond to low-frequency stimuli; cells in another region will respond to middle or high-frequencies.
 - Tonotopic representation revealed with fMRI.
 - In most cases, the region responding to the low tones (blue) is more posterior and medial to the region responding to the high tones (red).

Auditory Perception

- **Concurrent Processing for Sound Localization**
 - Barn owls rely on two cues to localize sounds: **interaural time**, and the **difference in the sound’s intensity at the two ears**.
 - These two cues are processed by independent neural pathways: each cochlear nucleus is composed of two parts, the magnocellular nucleus and the angular nucleus.
Summary

- This chapter provided an overview of the organization of the pathways involved in visual and auditory perception.
- A point emphasized in this chapter is that specialized mechanisms for solving different computational problems have evolved in the brain.

Thought Questions

- You watch a short video segment in which a large purple dinosaur appears briefly in the left visual field. Trace the flow of information about this stimulus and its separate features (color, shape, luminance, motion, position) from the eye through the secondary visual areas.
- Compare and contrast the functional organization of the visual and auditory systems. What are the computational problems that each system must solve, and how are these solutions achieved in the nervous system?

Thought Questions

- A person arrives at the hospital in a confused state and appears to have some impairments in visual perception. As the attending neurologist, you suspect the person may have had a stroke. How would you go about examining the patient to determine at what level in the visual pathways the damage has occurred? You should emphasize the behavioral tests you would administer, although you should feel free to make predictions about what you expect to see on MRI scans.
Thought Questions

- Define the physiological concepts of the receptive field and visual area. How is the receptive field of a cell established? How are the boundaries between visual areas identified? Can either receptive fields or visual areas be studied noninvasively in humans?
- Much of the focus in this chapter has been on salient visual properties such as color, shape, and motion. In looking around the environment, do these properties seem to reflect the most important cues for a highly skilled visual creature? What other sources of information might an adaptive visual system exploit?