Outline

3.1 Introduction

3.2 Training Single TLUs

♦ Gradient Descent
♦ Widrow-Hoff Rule
♦ Generalized Delta Procedure

3.3 Neural Networks

♦ The Backpropagation Method
♦ Derivation of the Backpropagation Learning Rule

3.4 Generalization, Accuracy, and Overfitting

3.5 Discussion
3.1 Introduction

- TLU (threshold logic unit): Basic units for neural networks
 - Based on some properties of biological neurons
- Training set
 - Input: real value, boolean value, …
 - Output: d_i: associated actions (Label, Class …)
- Target of training
 - Finding $f(X)$ corresponds “acceptably” to the members of the training set.
 - Supervised learning: Labels are given along with the input vectors.

$X: n$-dim vector, $X = (x_1, ..., x_n)$
3.2 Training Single TLUs

3.2.1 TLU Geometry

- Training TLU: Adjusting variable weights

- Elements of TLU
 - Weight: $\mathbf{W} = (w_1, \ldots, w_n)$
 - Threshold: θ

- Output of TLU: Using weighted sum $s = \mathbf{W} \cdot \mathbf{X}$
 - 1 if $s - \theta > 0$
 - 0 if $s - \theta < 0$

- Hyperplane
 - $\mathbf{W} \cdot \mathbf{X} - \theta = 0$
Equation of hyperplane:
\[\mathbf{X} \cdot \mathbf{W} - \theta = 0 \]

\[\frac{\mathbf{W}}{|\mathbf{W}|} \] Unit vector normal to hyperplane

\[\mathbf{X} \cdot \mathbf{W} - \theta > 0 \] on this side

\[\mathbf{X} \cdot \mathbf{W} - \theta < 0 \] on this side

Figure 3.1 TLU Geometry
3.2.2 Augmented Vectors

- Adopting the convention that threshold is fixed to 0.
- Arbitrary thresholds: \((n + 1)\)-dimensional vector
- \(\mathbf{W} = (w_1, \ldots, w_n, -\theta)\), \(\mathbf{X} = (x_1, \ldots, x_n, 1)\)
- Output of TLU
 - 1 if \(\mathbf{W} \cdot \mathbf{X} \geq 0\)
 - 0 if \(\mathbf{W} \cdot \mathbf{X} < 0\)
3.2.3 Gradient Decent Methods

- Training TLU: minimizing the *error function* by adjusting weight values.
- Batch learning v.s. incremental learning
- Commonly used error function: squared error
 \[\epsilon = (d - f)^2 \]

- **Gradient:**
 \[\frac{\partial \epsilon}{\partial W} = \begin{bmatrix} \frac{\partial \epsilon}{\partial w_1} & \cdots & \frac{\partial \epsilon}{\partial w_i} & \cdots & \frac{\partial \epsilon}{\partial w_{n+1}} \end{bmatrix} \]

- **Chain rule:**
 \[\frac{\partial \epsilon}{\partial W} = \frac{\partial \epsilon}{\partial s} \frac{\partial s}{\partial W} = \frac{\partial \epsilon}{\partial s} \mathbf{X} = -2(d - f) \frac{\partial f}{\partial s} \mathbf{X} \]

- Solution of nonlinearity of \(\frac{\partial f}{\partial s} \):
 - Ignoring threshold function: \(f = s \)
 - Replacing threshold function with differentiable nonlinear function
3.2.4 The Widrow-Hoff Procedure: First Solution

- Weight update procedure:
 - Using \(f = s = W \cdot X \)
 - Data labeled 1 \(\rightarrow 1 \), Data labeled 0 \(\rightarrow -1 \)

- Gradient:
 \[
 \frac{\partial \varepsilon}{\partial W} = -2(d - f) \frac{\partial f}{\partial s} X = -2(d - f)X
 \]

- New weight vector
 \[
 W \leftarrow W + c(d - f)X
 \]

- Widrow-Hoff (delta) rule
 - \((d - f) > 0 \) \(\rightarrow \) increasing \(s \) \(\rightarrow \) decreasing \((d - f) \)
 - \((d - f) < 0 \) \(\rightarrow \) decreasing \(s \) \(\rightarrow \) increasing \((d - f) \)
3.2.5 The Generalized Delta Procedure: Second Solution

- Sigmoid function (differentiable): [Rumelhart, et al. 1986]

\[f(s) = 1/(1 + e^{-s}) \]

- Gradient:

\[
\frac{\partial \varepsilon}{\partial W} = -2(d - f) \frac{\partial f}{\partial s} X = -2(d - f) f(1 - f) X
\]

- Generalized delta procedure:

\[W \leftarrow W + c(d - f) f(1 - f) X \]

- Target output: 1, 0
- Output \(f = \) output of sigmoid function
- \(f(1 - f) = 0 \), where \(f = 0 \) or 1
- Weight change can occur only within ‘fuzzy’ region surrounding the hyperplane (near the point \(f(s) = \frac{1}{2} \)).
Figure 3.2 A Sigmoid Function
3.2.6 The Error-Correction Procedure

- Using threshold unit: \((d - f)\) can be either 1 or −1.

\[
W \leftarrow W + c(d - f)X
\]

- In the linearly separable case, after finite iteration, \(W\) will be converged to the solution.

- In the nonlinearly separable case, \(W\) will never be converged.

- The Widrow-Hoff and generalized delta procedures will find minimum squared error solutions even when the minimum error is not zero.
3.3 Neural Networks
3.3.1 Motivation

- Need for use of multiple TLUs
 - Feedforward network: no cycle
 - Recurrent network: cycle (treated in a later chapter)
 - Layered feedforward network
 - \(j \)th layer can receive input only from \(j - 1 \)th layer.

- Example: \(f = x_1 x_2 + \overline{x_1} \overline{x_2} \)

Figure 3.4 A Network of TLUs That Implements the Even-Parity Function
3.3.2 Notation

- Hidden unit: neurons in all but the last layer
- Output of \(j \)-th layer: \(X^{(j)} \rightarrow \text{input of } (j+1)\)-th layer
- Input vector: \(X^{(0)} \)
- Final output: \(f \)
- The weight of \(i \)-th sigmoid unit in the \(j \)-th layer: \(W_i^{(j)} \)
- Weighted sum of \(i \)-th sigmoid unit in the \(j \)-th layer: \(s_i^{(j)} \)
 \[s_i^{(j)} = X^{(j-1)} \cdot W_i^{(j)} \]
- Number of sigmoid units in \(j \)-th layer: \(m_j \)
 \[W_i^{(j)} = (w_{1,i}^{(j)}, \ldots, w_{l,i}^{(j)}, \ldots, w_{m_{(j-1)}+1,i}^{(j)}) \]
Figure 3.4 A k-layer Network of Sigmoid Units
From the Optimization View (1)

- **Notations**
 - $x^{(i-1)}$: (augmented) input vector of (i)-th layer
 - $f^{(i)}$: multivariate activation function of (i)-th layer
 - $m^{(i)}$: number of elements in (i)-th layer; length of $x^{(i)} = m^{(i)} + 1$
 length of $f^{(i)} = m^{(i)}$
 - $W^{(i)}$: weight matrix between $(i-1)$-th and (i)-th layers
 - $m^{(i-1)}+1 \times m^{(i)}$ matrix
 - $w_{jk}^{(i)}$: the value of weight between node j of $(i-1)$-th layer and node k of (i)-th layer
 - $s^{(j)} = W^{(j)}x^{(j-1)}$, $s_i^{(j)}$: $W_i^{(j)}x^{(j-1)}$
 - $f^{(i)} = (f_1^{(i)}, \cdots, f_{m^{(i)}}^{(i)})^T$
 $x^{(i)} = (f^{(i)}(s^{(i)})^T, 1)^T$
 $x^{(i)} = (\tilde{x}^T, 1)^T$

 \tilde{x} : original input vector
From the Optimization View (2)

- The generic form of optimizations: \(\arg \min_W \text{obj} \)
- An objective function of feed-forward neural network
 - Squared error between output and desired output
 \[E = \frac{1}{2} \sum_l \|d(l) - f^{(k)}(l)\|^2 \]
 - General procedure to minimize the objective
 \[\mathcal{W} \leftarrow \mathcal{W} - \eta \frac{\partial E}{\partial \mathcal{W}} \]
- Only thing we must do is to calculate the gradient: backpropagation does it!

In the optimization view, learning NN is just one of minimization problem.

\[\arg \min_{\mathcal{W} = \{W^{(1)}, \ldots, W^{(k)}\}} \frac{1}{2} \sum_l \|d(l) - f^{(k)}(l)\|^2 \]
Feed-forward step: calculate $f^{(k)}$.

Assumption: the activation function of each neuron in a layer is equivalent.
From the Optimization View (3)

- Feed-forward step: calculate $\mathbf{f}^{(1)}$.

$$\tilde{\mathbf{x}}^{(1)} = \mathbf{f}^{(1)} (\mathbf{W}^{(1)} \mathbf{T} \mathbf{x}^{(0)})$$

If we use vectorized activation function: $\mathbf{f}^{(i)} (\mathbf{x}) = (f^{(i)} (x_1), \ldots, f^{(i)} (x_{m_i}))^T$
From the Optimization View (3)

- Feed-forward step: calculate $f^{(2)}$.

\[\tilde{x}^{(2)} = f^{(2)}(W^{(2)^T}x^{(1)}) \]
Feed-forward step: calculate $f^{(3)}$.

$$\tilde{x}^{(3)} = f^{(3)}(W^{(3)}T x^{(2)})$$
Feed-forward step: calculate $f^{(k)}$.

$$\tilde{x}^{(k)} = f^{(k)}(W^{(k)}T_x^{(k-1)})$$
Completion of feed-forward step

- For every example-pair, repeat above step to calculate $f^{(k)}(l)$.
- We can now calculate error:

$$E = \sum_l E_l = \frac{1}{2} \sum_l \|d(l) - f^{(k)}(l)\|^2$$

Back-propagation step

- From k-th layer to input layer, the gradient $\frac{\partial E}{\partial W^{(i)}}$ is calculated using chain rule.
Backpropagation at output layer: \[
\frac{\partial E_l}{\partial W^{(k)}} = \frac{\partial E_l}{\partial f_j^{(k)}} \frac{\partial f_j^{(k)}}{\partial w_{ij}^{(k)}}
\]
Chain rule

- E_l is a function of $f^{(k)}$; $f^{(k)}$ is a function of $w_{ij}^{(k)}$.
- E_l is an indirect function of w of which gradient can be calculated via chain rule.

$$\frac{\partial E_l}{\partial w_{i,j}^{(k)}} = \frac{\partial E_l}{\partial f_j^{(k)}} \frac{\partial f_j^{(k)}}{\partial w_{i,j}^{(k)}} = -(d_j - f_j^{(k)}) \frac{\partial f_j^{(k)}}{\partial w_{i,j}^{(k)}}$$
Backpropagation at hidden layer: \(\frac{\partial E_l}{\partial W^{(3)}} \)

Each \(f_h^{(k)} \) is a function of \(f_j^{(3)} \).

\[
\frac{\partial E_l}{\partial w_{ij}^{(3)}} = \frac{\partial E_l}{\partial f_j^{(3)}} \frac{\partial f_j^{(3)}}{\partial w_{ij}^{(3)}} = \sum_h \frac{\partial E_l}{\partial f_h^{(k)}} \frac{\partial f_h^{(k)}}{\partial f_j^{(3)}} \frac{\partial f_j^{(3)}}{\partial w_{ij}^{(3)}}.
\]

\(f_j^{(3)} \) is a function of \(w_{ij}^{(3)} \). Each \(f_h^{(k)} \) is a function of \(f_j^{(3)} \).
Intermediate device for recursive equation

- $\delta_i^{(j)} = \frac{\partial E_i}{\partial s_i^{(j)}}$
- $\delta^{(j)} = (\delta_1^{(j)}, \ldots, \delta_m^{(j)})^T$
From the Optimization View (5)

- **Recursive relation**

\[
\frac{\partial E_l}{\partial w_{ij}^{(3)}} = \frac{\partial E_l}{\partial s_j^{(3)}} \frac{\partial s_j^{(3)}}{\partial w_{ij}^{(3)}} = \sum_h \frac{\partial E_l}{\partial s_h^{(k)}} \frac{\partial s_h^{(k)}}{\partial s_j^{(3)}} \frac{\partial s_j^{(3)}}{\partial w_{ij}^{(3)}}
\]

\[
\frac{\partial s_h^{(k)}}{\partial s_j^{(3)}} = \frac{\partial s_h^{(k)}}{\partial x_j^{(3)}} \frac{\partial x_j^{(3)}}{\partial s_j^{(3)}} = w_{jh}^{(k)} \frac{\partial f_j^{(3)}}{\partial s_j^{(3)}}
\]

\[
\frac{\partial s_j^{(3)}}{\partial w_{ij}^{(3)}} = x_i^{(2)}
\]

\[
\delta_j^{(3)} = \frac{\partial f_j^{(3)}}{\partial s_j^{(3)}} \sum_h \delta_h^{(k)} w_{jh}^{(k)}
\]

\[
\frac{\partial E_l}{\partial w_{ij}^{(3)}} = \delta_j^{(3)} x_i^{(2)}
\]
From the Optimization View (6)

- **Output layer**
 \[
 \delta_i^{(k)} = \frac{\partial E_i}{\partial s_i^{(k)}} = \frac{\partial E_i}{\partial f_i^{(k)}} \frac{\partial f_i^{(k)}}{\partial s_i^{(k)}} = -(d_i - f_i^{(k)}) \frac{\partial f_i^{(k)}}{\partial s_i^{(k)}}
 \]

- **Hidden layer**
 \[
 \delta_j^{(k)} = \frac{\partial f_j^{(k)}}{\partial s_j^{(k)}} \sum_h \delta_h^{(k+1)} w_{jh}^{(k+1)}
 \]

- **Gradient**
 \[
 \frac{\partial E_i}{\partial w_{i,j}^{(k)}} = \delta_j^{(k)} x_i^{(k-1)}
 \]
From the Optimization View (6)

- Backpropagation step at 3-th layer
From the Optimization View (6)

- Backpropagation step at 2-nd layer

\[
\frac{\partial E_l}{\partial W^{(2)}}
\]
Backpropagation step at 1-st layer
Summary of backpropagation

- To find a solution of

\[
\arg \min_{W} \frac{1}{2} \sum_{l} \|d(l) - f^{(k)}(l)\|^2
\]

where

\[W = \{w^{(1)}, \ldots, w^{(k)}\}\]

- We can use gradient descent method.

\[W \leftarrow W - \eta \frac{\partial E}{\partial W}\]

- The gradient is calculated by backpropagation method.

- Algorithm
 - Feedforward \(l\)-th input of examples.
 - Backpropagate to get the gradient
 - Compose the gradient \(\frac{\partial E_i}{\partial W}\)
 - Update weights. \(\frac{\partial E}{\partial W} = \sum_i \frac{\partial E_i}{\partial W}\)
 - Loop until the error is minimized.
3.3.5 (con’t)

- Example (even parity function)

<table>
<thead>
<tr>
<th>input</th>
<th>target</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Learning rate: 1.0

Figure 3.6 A Network to Be Trained by Backprop
3.4 Generalization, Accuracy, and Overfitting

- Generalization ability:
 - NN appropriately classifies vectors not in the training set.
 - Measurement = accuracy

- Curve fitting
 - Number of training input vectors \geq number of degrees of freedom of the network.
 - In the case of m data points, is $(m-1)$-degree polynomial best model? **No, it can not capture any special information.**

- Overfitting
 - Extra degrees of freedom are essentially just fitting the noise.
 - Given sufficient data, the *Occam’s Razor* principle dictates to choose the lowest-degree polynomial that adequately fits the data.
Figure 3.7 Curve Fitting

- Quadratic function (moderate error)
- Linear function (high error)
- High-degree function (zero error)
- Data points
3.4 (cont’d)

- **Out-of-sample-set error rate**
 - Error rate on data drawn from the same underlying distribution of training set.

- **Dividing available data into a training set and a validation set**
 - Usually use 2/3 for training and 1/3 for validation.

- **k-fold cross validation**
 - k disjoint subsets (called folds).
 - Repeat training k times with the configuration: one validation set, k-1 (combined) training sets.
 - Take average of the error rate of each validation as the out-of-sample error.
 - Empirically 10-fold is preferred.
Figure 3.8 Error Versus Number of Hidden Units

Fig 3.9 Estimate of Generalization Error Versus Number of Hidden Units
3.5 Additional Readings and Discussion

- **Applications**
 - Pattern recognition, automatic control, brain-function modeling
 - Designing and training neural networks still need experience and experiments.

- **Major annual conferences**
 - Neural Information Processing Systems (NIPS)
 - International Conference on Machine Learning (ICML)
 - Computational Learning Theory (COLT)

- **Major journals**
 - Neural Computation
 - IEEE Transactions on Neural Networks
 - Machine Learning