Outline

3.1 Introduction

3.2 Training Single TLUs
 ♦ Gradient Descent
 ♦ Widrow-Hoff Rule
 ♦ Generalized Delta Procedure

3.3 Neural Networks
 ♦ The Backpropagation Method
 ♦ Derivation of the Backpropagation Learning Rule

3.4 Generalization, Accuracy, and Overfitting

3.5 Discussion
3.1 Introduction

- TLU (threshold logic unit): Basic units for neural networks
 - Based on some properties of biological neurons
- Training set
 - Input: real value, boolean value, …
 - Output: d_i: associated actions (Label, Class …)
- Target of training
 - Finding $f(X)$ corresponds “acceptably” to the members of the training set.
 - Supervised learning: Labels are given along with the input vectors.

$X : n$-dim vector, $X = (x_1, ..., x_n)$
3.2 Training Single TLUs

3.2.1 TLU Geometry

- Training TLU: Adjusting variable weights
- A single TLU: Perceptron, Adaline (adaptive linear element) [Rosenblatt 1962, Widrow 1962]
- Elements of TLU
 - Weight: $\mathbf{W} = (w_1, \ldots, w_n)$
 - Threshold: θ
- Output of TLU: Using weighted sum $s = \mathbf{W} \cdot \mathbf{X}$
 - 1 if $s - \theta > 0$
 - 0 if $s - \theta < 0$
- Hyperplane
 - $\mathbf{W} \cdot \mathbf{X} - \theta = 0$
Equation of hyperplane:
\[\mathbf{X} \cdot \mathbf{W} - \theta = 0 \]

\[\frac{\mathbf{W}}{|\mathbf{W}|} \] Unit vector normal to hyperplane

\[\mathbf{X} \cdot \mathbf{W} - \theta > 0 \]
on this side

\[\mathbf{X} \cdot \mathbf{W} - \theta < 0 \]
on this side

Figure 3.1 TLU Geometry
3.2.2 Augmented Vectors

- Adopting the convention that threshold is fixed to 0.
- Arbitrary thresholds: \((n + 1)\)-dimensional vector
- \(W = (w_1, \ldots, w_n, -\theta), X = (x_1, \ldots, x_n, 1)\)
- Output of TLU
 - 1 if \(W \cdot X \geq 0\)
 - 0 if \(W \cdot X < 0\)
3.2.3 Gradient Decent Methods

- Training TLU: minimizing the error function by adjusting weight values.
- Batch learning v.s. incremental learning
- Commonly used error function: squared error
 \[\varepsilon = (d - f)^2 \]

 - Gradient:
 \[\frac{\partial \varepsilon}{\partial \mathbf{W}} = \begin{bmatrix} \frac{\partial \varepsilon}{\partial w_1} & \cdots & \frac{\partial \varepsilon}{\partial w_i} & \cdots & \frac{\partial \varepsilon}{\partial w_{n+1}} \end{bmatrix} \]

 - Chain rule:
 \[\frac{\partial \varepsilon}{\partial \mathbf{W}} = \frac{\partial \varepsilon}{\partial s} \frac{\partial s}{\partial \mathbf{W}} = \frac{\partial \varepsilon}{\partial s} \mathbf{X} = -2(d - f) \frac{\partial f}{\partial s} \mathbf{X} \]

- Solution of nonlinearity of \(\frac{\partial f}{\partial s} \):
 - Ignoring threshold function: \(f = s \)
 - Replacing threshold function with differentiable nonlinear function
3.2.4 The Widrow-Hoff Procedure: First Solution

- Weight update procedure:
 - Using \(f = s = W \cdot X \)
 - Data labeled 1 \(\rightarrow \) 1, Data labeled 0 \(\rightarrow \) -1

- Gradient:
 \[
 \frac{\partial \varepsilon}{\partial W} = -2(d - f) \frac{\partial f}{\partial s} X = -2(d - f)X
 \]

- New weight vector
 \[
 W \leftarrow W + c(d - f)X
 \]

- Widrow-Hoff (delta) rule
 - \((d - f) > 0 \) \(\rightarrow \) increasing \(s \) \(\rightarrow \) decreasing \((d - f) \)
 - \((d - f) < 0 \) \(\rightarrow \) decreasing \(s \) \(\rightarrow \) increasing \((d - f) \)
3.2.5 The Generalized Delta Procedure: Second Solution

- Sigmoid function (differentiable): [Rumelhart, et al. 1986]
 \[f(s) = \frac{1}{1 + e^{-s}} \]

- Gradient:
 \[\frac{\partial \varepsilon}{\partial W} = -2(d - f) \frac{\partial f}{\partial s} X = -2(d - f) f(1 - f) X \]

- Generalized delta procedure:
 \[W \leftarrow W + c(d - f) f(1 - f) X \]

 - Target output: 1, 0
 - Output \(f \) = output of sigmoid function
 - \(f(1 - f) = 0 \), where \(f = 0 \) or 1
 - Weight change can occur only within ‘fuzzy’ region surrounding the hyperplane (near the point \(f(s) = \frac{1}{2} \)).
Figure 3.2 A Sigmoid Function
3.2.6 The Error-Correction Procedure

- Using threshold unit: \((d - f)\) can be either 1 or \(-1\).

\[
W \leftarrow W + c(d - f)X
\]

- In the linearly separable case, after finite iteration, \(W\) will be converged to the solution.

- In the nonlinearly separable case, \(W\) will never be converged.

- The Widrow-Hoff and generalized delta procedures will find minimum squared error solutions even when the minimum error is not zero.
3.3 Neural Networks

3.3.1 Motivation

- Need for use of multiple TLUs
 - Feedforward network: no cycle
 - Recurrent network: cycle (treated in a later chapter)
 - Layered feedforward network
 - \(j \)th layer can receive input only from \(j - 1 \)th layer.

- Example: \(f = x_1 x_2 + \overline{x}_1 \overline{x}_2 \)

![Figure 3.4 A Network of TLUs That Implements the Even-Parity Function](image)
3.3.2 Notation

- Hidden unit: neurons in all but the last layer
- Output of j-th layer: $X^{(j)} \rightarrow$ input of $(j+1)$-th layer
- Input vector: $X^{(0)}$
- Final output: f
- The weight of i-th sigmoid unit in the j-th layer: $W_i^{(j)}$
- Weighted sum of i-th sigmoid unit in the j-th layer: $s_i^{(j)}$
 \[s_i^{(j)} = X^{(j-1)} \cdot W_i^{(j)} \]
- Number of sigmoid units in j-th layer: m_j
 \[W_i^{(j)} = (w_{1,i}^{(j)}, \ldots, w_{l,i}^{(j)}, \ldots, w_{m_{(j-1)}+1,i}^{(j)}) \]
Figure 3.4 A k-layer Network of Sigmoid Units
From the Optimization View (1)

- **Notations**
 - $x^{(i-1)}$: (augmented) input vector of (i)-th layer
 - $f^{(i)}$: multivariate activation function of (i)-th layer
 - $m^{(i)}$: number of elements in (i)-th layer; length of $x^{(i)} = m^{(i)} + 1$, length of $f^{(i)} = m^{(i)}$
 - $W^{(i)}$: weight matrix between (i-1)-th and (i)-th layers
 - $m^{(i-1)}+1 \times m^{(i)}$ matrix
 - $w_{jk}^{(i)}$: the value of weight between node j of (i-1)-th layer and node k of (i)-th layer
 - $s^{(i)} = W^{(i)T}x^{(i-1)}$, $s^{(i)}_t = W^{(i)t}x^{(i-1)}$
 - $f^{(i)} = (f_{1}^{(i)}, \ldots, f_{m^{(i)}}^{(i)})^T$ $x^{(i)} = (f^{(i)}(s^{(i)})^T, 1)^T$ $\tilde{x}^{(i)} = (\tilde{x}^T, 1)^T$

 \tilde{x}: original input vector
From the Optimization View (2)

- the generic form of optimizations: \(\arg \min_{W} \text{obj} \)
- An objective function of feed-forward neural network
 - Squared error between output and desired output
 \[
 E = \frac{1}{2} \sum_{l} \|d(l) - f^{(k)}(l)\|^2
 \]
 - In the optimization view, learning NN is just one of minimization problem.
 \[
 \arg \min_{\mathcal{W} = \{W^{(1)}, \ldots, W^{(k)}\}} \frac{1}{2} \sum_{l} \|d(l) - f^{(k)}(l)\|^2
 \]
- General procedure to minimize the objective
 \[
 \mathcal{W} \leftarrow \mathcal{W} - \eta \frac{\partial E}{\partial \mathcal{W}}
 \]
- Only thing we must do is to calculate the gradient: backpropagation does it!
From the Optimization View (3)

- Feed-forward step: calculate $\mathbf{f}^{(k)}$.

\[\hat{x}_i^{(1)} = f_i^{(1)} (\mathbf{W}_i^{(1)} \cdot x^{(0)}) \quad \mathbf{W}_{ij} = (w_{1i}, \ldots, w_{li}, \ldots, w_{m(j-1)+1,i}) \]

Assumption: the activation function of each neuron in a layer is equivalent.
From the Optimization View (3)

- Feed-forward step: calculate $f^{(1)}$.

\[
\tilde{x}^{(1)} = f^{(1)}(W^{(1)T}x^{(0)})
\]

If we use vectorized activation function: $f^{(i)}(x) = (f^{(i)}(x_1), \cdots, f^{(i)}(x_{m_i}))^T$
From the Optimization View (3)

- Feed-forward step: calculate $f^{(2)}$.

\[
\tilde{x}^{(2)} = f^{(2)}(W^{(2)}^T x^{(1)})
\]
From the Optimization View (3)

- Feed-forward step: calculate $f^{(3)}$.

\[
\tilde{x}^{(3)} = f^{(3)}(W^{(3)T}x^{(2)})
\]
From the Optimization View (3)

- Feed-forward step: calculate $f^{(k)}$.

\[
\tilde{x}^{(k)} = f^{(k)}(W^{(k)}T\ x^{(k-1)})
\]
From the Optimization View (4)

- Completion of feed-forward step
 - For every example-pair, repeat above step to calculate $f^{(k)}(l)$.
 - We can now calculate error:
 \[
 E = \sum_{l} E_l = \frac{1}{2} \sum_{l} \| d(l) - f^{(k)}(l) \|^2
 \]

- Back-propagation step
 - From k-th layer to input layer, the gradient $\frac{\partial E}{\partial W^{(i)}}$ is calculated using chain rule.
Backpropagation at output layer: $\frac{\partial E_l}{\partial W^{(k)}}$

That means to calculate $\frac{\partial E_l}{\partial w_{ij}^{(k)}} = \frac{\partial E_l}{\partial f_j^{(k)}} \frac{\partial f_j^{(k)}}{\partial w_{ij}^{(k)}}$
From the Optimization View (4)

- Chain rule
 - E_l is a function of $f^{(k)}$; $f^{(k)}$ is a function of $w_{ij}^{(k)}$.
 - E_l is an indirect function of w of which gradient can be calculated via chain rule.

$$
\frac{\partial E_l}{\partial w_{i,j}^{(k)}} = \frac{\partial E_l}{\partial f_j^{(k)}} \frac{\partial f_j^{(k)}}{\partial w_{i,j}^{(k)}} = -(d_j - f_j^{(k)}) \frac{\partial f_j^{(k)}}{\partial w_{i,j}^{(k)}}
$$
From the Optimization View (5)

- Backpropagation at hidden layer: \(\frac{\partial E_l}{\partial W^{(3)}} \)

\[
\frac{\partial E_l}{\partial w_{ij}^{(3)}} = \frac{\partial E_l}{\partial f_j^{(3)}} \frac{\partial f_j^{(3)}}{\partial w_{ij}^{(3)}} = \sum_h \frac{\partial E_l}{\partial f_h^{(k)}} \frac{\partial f_h^{(k)}}{\partial f_j^{(3)}} \frac{\partial f_j^{(3)}}{\partial w_{ij}^{(3)}} \]

\(f_j^{(3)} \) is a function of \(w_{ij}^{(3)} \).
Each \(f_h^{(k)} \) is a function of \(f_j^{(3)} \).
From the Optimization View (5)

- Intermediate device for recursive equation
 - $\delta^{(j)}_i = \frac{\partial E_I}{\partial s^{(j)}_i}$
 - $\delta^{(j)} = (\delta^{(j)}_1, \ldots, \delta^{(j)}_{m_j})^T$
From the Optimization View (5)

- **Recursive relation**

\[
\frac{\partial E_l}{\partial w_{ij}^{(3)}} = \frac{\partial E_l}{\partial s_j^{(3)}} \frac{\partial s_j^{(3)}}{\partial w_{ij}^{(3)}} = \sum_h \frac{\partial E_l}{\partial s_h^{(k)}} \frac{\partial s_h^{(k)}}{\partial s_j^{(3)}} \frac{\partial s_j^{(3)}}{\partial w_{ij}^{(3)}}
\]

\[
\frac{\partial s_h^{(k)}}{\partial s_j^{(3)}} = \frac{\partial s_h^{(k)}}{\partial x_j^{(3)}} \frac{\partial x_j^{(3)}}{\partial s_j^{(3)}} = w_{jh}^{(k)} \frac{\partial f_j^{(3)}}{\partial s_j^{(3)}}
\]

\[
\frac{\partial s_j^{(3)}}{\partial w_{ij}^{(3)}} = \delta_j^{(3)}
\]

\[
\frac{\partial E_l}{\partial w_{ij}^{(3)}} = \delta_j^{(3)} \delta_i^{(2)}
\]

\[
\delta_j^{(3)} = \frac{\partial f_j^{(3)}}{\partial s_j^{(3)}} \sum_h \delta_h^{(k)} w_{jh}^{(k)}
\]

\[
\delta_j^{(3)} = \frac{\partial f_j^{(3)}}{\partial s_j^{(3)}} \delta_i^{(2)}
\]
From the Optimization View (6)

- **Output layer**
 \[\delta_i^{(k)} = \frac{\partial E_l}{\partial s_i^{(k)}} = \frac{\partial E_l}{\partial f_i^{(k)}} \frac{\partial f_i^{(k)}}{\partial s_i^{(k)}} = -(d_i - f_i^{(k)}) \frac{\partial f_i^{(k)}}{\partial s_i^{(k)}} \]

- **Hidden layer**
 \[\delta_j^{(k)} = \frac{\partial f_j^{(k)}}{\partial s_j^{(k)}} \sum_h \delta_h^{(k+1)} w_{jh}^{(k+1)} \]

- **Gradient**
 \[\frac{\partial E_l}{\partial w_{ij}^{(k)}} = \delta_j^{(k)} x_i^{(k-1)} \]
From the Optimization View (6)

- Backpropagation step at 3-th layer

\[
\frac{\partial E_l}{\partial W^{(3)}}
\]
From the Optimization View (6)

- Backpropagation step at 2-nd layer
From the Optimization View (6)

- Backpropagation step at 1-st layer
Summary of backpropagation

- To find a solution of
 \[
 \arg\min_\mathcal{W} \frac{1}{2} \sum_l \|d(l) - f^{(k)}(l)\|^2
 \]
 \[\mathcal{W} = \{W^{(1)}, \ldots, W^{(k)}\}\]
 - We can use gradient descent method.

 \[\mathcal{W} \leftarrow \mathcal{W} - \eta \frac{\partial E}{\partial \mathcal{W}}\]

- The gradient is calculated by backpropagation method.

- Algorithm
 - Feedforward \(l\)-th input of examples.
 - Backpropagate to get the gradient
 - Compose the gradient \[\frac{\partial E_l}{\partial \mathcal{W}}\]
 - Update weights. \[\frac{\partial E}{\partial \mathcal{W}} = \sum_l \frac{\partial E_l}{\partial \mathcal{W}}\]
 - Loop until the error is minimized.
Example (even parity function)

<table>
<thead>
<tr>
<th>input</th>
<th>target</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>0 0 1 1</td>
<td></td>
</tr>
<tr>
<td>0 1 1 0</td>
<td></td>
</tr>
<tr>
<td>1 1 1 1</td>
<td></td>
</tr>
</tbody>
</table>

Learning rate: 1.0

Figure 3.6 A Network to Be Trained by Backprop
3.4 Generalization, Accuracy, and Overfitting

- Generalization ability:
 - NN appropriately classifies vectors not in the training set.
 - Measurement = accuracy

- Curve fitting
 - Number of training input vectors \geq number of degrees of freedom of the network.
 - In the case of m data points, is $(m-1)$-degree polynomial best model? No, it can not capture any special information.

- Overfitting
 - Extra degrees of freedom are essentially just fitting the noise.
 - Given sufficient data, the Occam’s Razor principle dictates to choose the lowest-degree polynomial that adequately fits the data.
Figure 3.7 Curve Fitting

- Quadratic function (moderate error)
- Linear function (high error)
- High-degree function (zero error)
- Data points
3.4 (cont’d)

- Out-of-sample-set error rate
 - Error rate on data drawn from the same underlying distribution of training set.
- Dividing available data into a training set and a validation set
 - Usually use 2/3 for training and 1/3 for validation
- k-fold cross validation
 - k disjoint subsets (called folds).
 - Repeat training k times with the configuration: one validation set, $k-1$ (combined) training sets.
 - Take average of the error rate of each validation as the out-of-sample error.
 - Empirically 10-fold is preferred.
Figure 3.8 Error Versus Number of Hidden Units

Figure 3.9 Estimate of Generalization Error Versus Number of Hidden Units
3.5 Additional Readings and Discussion

- Applications
 - Pattern recognition, automatic control, brain-function modeling
 - Designing and training neural networks still need experience and experiments.

- Major annual conferences
 - Neural Information Processing Systems (NIPS)
 - International Conference on Machine Learning (ICML)
 - Computational Learning Theory (COLT)

- Major journals
 - Neural Computation
 - IEEE Transactions on Neural Networks
 - Machine Learning