Perceptron

Presenter: Seok Ho-Sik

Reference: Machine Learning, Tom Mitchell, McGraw Hill

Hypothesis space and classification

• Question: how to separate these two groups?

Neural networks

- Neuron
 - A cell in the brain whose principal function is the collection, processing, and dissemination of electrical signals.

- The brain's information-processing capacity is thought to emerge from networks of such neurons.
- Artificial Neural Networks
 - Connectionism, parallel distributed processing etc.
 - Some of the earliest AI work aimed to create artificial neural networks.

A simple mathematical model of a neuron

• The unit's output activation is

$$o(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \dots + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$
$$o(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\ -1 & \text{otherwise.} \end{cases}$$

 w_j is the weight on the link from unit *j* to an output unit.

Units in neural networks

- Neural networks are composed of nodes and directed links.
- Link
 - A link from input unit *j* to output unit *i* serves to propagate the activation x_i from unit *j* to unit *i*.
 - Each link also has a numeric weight $w_{j,i}$ which determines the strength.
- Weighted sum
 - Each unit *i* computes a weighted sum of its inputs:

$$in_i = \sum_{j=0}^n w_{j,i} x_j$$

Activation function

• Activation function is used to derive the output.

OR Gate

NOT Gate

AND Gate

Perceptrons (1/2)

- Single layer feed-forward neural networks
 - A feed-forward neural network: it has no internal state other than the weights themselves.
 - Feed-forward networks are usually arranged in layers, such that each unit receives input only from units in the immediately preceding layer.

Perceptrons (2/2)

- Hypothesis space of a perceptron (representation power of a perceptron)
- The case where the threshold perceptron return 1 $\sum_{j=0}^{n} w_j x_j > 0 \quad \text{or} \quad \vec{W} \cdot \vec{x} > 0$
- $W \bullet X = 0$ defines a hyperplane in the input space.
 - A perceptron returns 1 if and only if the input is on one side of that hyperplane → *linear separator*

Learning algorithm (1/4)

- Basic idea
 - To adjust the weights of the network to minimize some measure of the error on the training set.

 $w_i \leftarrow w_i + \Delta w_i \qquad \Delta w_i = \eta (t - o) a_i$

Target value

- *t*: target value
- *o*: output of the network
- $-\eta$: learning rate
- Classical measure of error
 - Sum of squared error

Output of the network

$$E = \frac{1}{2}Err^{2} = \frac{1}{2}(t_{d} - o_{d})^{2}$$

Learning algorithm (2/4) - Gradient descent rule

- Gradient
 - To calculate the direction of steepest descent along the error space.

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n}\right]$$
$$\vec{w} \leftarrow \vec{w} + \Delta \vec{w}$$
$$\Delta \vec{w} = -\eta \nabla E(\vec{w})$$
$$w_i \leftarrow w_i + \Delta w_i$$
$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

- Negative sign is present in order to order move the weight vector in the direction that *decrease E*.

Learning algorithm (3/4) - Gradient descent rule

$$\begin{aligned} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_d \frac{\partial}{\partial w_i} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_d 2 (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\ &= \sum_d (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x_d}) \\ \frac{\partial E}{\partial w_i} &= \sum_d (t_d - o_d) (-x_{i,d}) \end{aligned}$$

$$\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) x_{id}$$

D: training data set

Learning algorithm (4/4) - Gradient descent rule

GRADIENT-DESCENT($training_examples, \eta$)

Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each Δw_i to zero.
 - For each $\langle \vec{x}, t \rangle$ in training_examples, Do
 - * Input the instance \vec{x} to the unit and compute the output o
 - * For each linear unit weight w_i , Do

$$\Delta w_i \leftarrow \Delta w_i + \eta (t - o) x_i$$

- For each linear unit weight w_i , Do

$$w_i \leftarrow w_i + \Delta w_i$$

Exercise

http://lcn.epfl.ch/tutorial/english/perceptron/html/index.html

- Observe the behavior of the Perceptron in the following cases
 - Case 1: $y = [0 \ 0 \ 0 \ 0]$
 - Case 2: $y = [1 \ 0 \ 0 \ 0]$
 - Case 3: $y = [0 \ 1 \ 1 \ 0]$
 - Case 4: $y = [0 \ 0 \ 0 \ 1]$
 - Case 5: $y = [1 \ 0 \ 0 \ 1]$
 - Case 6: the effect of learning rate (change the learning rate at your will and observe the result)

Homework

- Due: Sep. 22nd
- Hardcopy submission to TA
- Problem1
 - Can the Perceptron solve the following classification task? <u>Answer</u> the question and <u>prove your answer</u> (hint: consider contents in slide 8):

$$Patterns \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 6 \end{bmatrix} \quad Outputs = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$$

- Problem 2
 - Explain the effect of learning rate using the following applet.
 - <u>http://freeisms.com/PerceptronAppletItself.html</u>
 - Experiment with learning rates of 0.06, 0.30, 0.6, 1.0 and discuss the effect of learning rate using the "error view."
 - 1 page