Chapter 19. Understanding Queries and Signals

Lecture Notes on Artificial Intelligence

Summarized by Heo, Min-Oh and Lee, Sangwoo

Biointelligence Laboratory
School of Computer Science and Engineering
Seoul National University

http://bi.snu.ac.kr
Contents

Overview of Chapter 19
19.1 The setting
19.2 Natural Language Access to Computer System
19.3 HASP/SIAP

Appendix
19.1 The setting
 Funding environment change
 Focuses of AI research
19.2 Natural Language Access to Computer System
 19.2.1 LIFER
 19.2.2 CHAT-80
 19.2.3 Transportable Natural Language Query Systems
19.3 HASP/SIAP
 HASP/SIAP
Overview of Chapter 19

- DARPA’s policy change caused by Mansfield amendment
 - Mansfield amendment: Defense Department research be relevant to military needs

- Approaches to understand machines queries
 - Systems to handle natural language queries as “Front ends” for accessing databases easily
 - Examples) LIFER, LADDER, CHAT-80
 - To develop Transportable query system

- Approaches to understand machines signals
 - Systems to identify and tracking ships and submarines using acoustic data from concealed hydrophone arrays
 - HASP/SIAP
Chapter 19. Understanding Queries and Signals

19.1 The Setting
Fund environment change

- DARPA’s policy change caused by Mansfield amendment
 - Mansfield amendment: Defense Department research be relevant to military needs

- Focuses of AI research
 - Text-based, natural language access to large, distributed databases
 - Can be seen as ‘command and control test-bed systems’
 - Automating the analysis of aerial photos
 - Can help as tools intelligence analysts for spotting targets of military interest in photos
Chapter 19. Understanding Queries and Signals

19.2 Natural Language Access to Computer System
Understanding queries

- Systems to handle natural language queries as “Front ends” for accessing databases easily
 - Ellipsis: error correcting and query auto-completing
 - Using rules and grammars with logical expression
 - English query
 → a hypothetical database query
 → actual database queries
- Example systems
 - LIFER, LADDER, CHAT-80

- Transportable query system
 - The system can be adapted to serve as natural language front ends to a variety of different databases
 - Example system: TEAM
Chapter 19. Understanding Queries and Signals

19.3 HASP/SIAP
Understanding signals

- Systems to identify and tracking ships and submarines using acoustic data from concealed hydrophone arrays

- HASP/SIAP
 - Blackboard model
 - Situation board
 - Vessels
 - Sound sources: engines, shafts, propellers and etc.
 - Spectral features abstracted from the acoustic data

- KS-link
 - KS cause inference
 - Allowing another KS to draw an additional inference, and so on in cascade until all relevant information had been used
 - One of types: IF-THEN rule

```
Figure 19.6: A network structure linking data at different levels.
```
Chapter 19. Understanding Queries and Signals

Appendix
Chapter 19. Understanding Queries and Signals

19.1 The Setting
Funding environment change

- DARPA’s policy change caused by Mansfield amendment
 - Mansfield amendment: Defense Department research be relevant to military needs
- DARPA director Heilmeier’s list which IPTO (Information Processing Technique Office) could do
 - Get computers to read Morse code in the presence of other code and noise
 - Get computers to identify/detect key words in a stream of speech
 - Solve DoD’s “software problem”
 - Make a real contribution to command and control
 - Do a good thing in sonar
Focuses of AI research

- Text-based, natural language access to large, distributed databases
 - Can be seen as ‘command and control test-bed systems’

- Automating the analysis of aerial photos
 - Can help as tools intelligence analysts for spotting targets of military interest in photos

© 2012, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr
Chapter 19. Understanding Queries and Signals

19.2 Natural Language Access to Computer System
19.2.1 LIFER

- Language Interface Facility with Elliptical and Recursive Features
- A system for rapid development of natural language “front ends” to databases and other software

Features

- Parser translated sentences and requests into appropriate interactions with the software
- Ellipsis: Mechanisms for handling incomplete inputs
 - Correcting spelling errors
 - Allowing novices to extend the language through the use of paraphrases
- The language was defined in terms of “Patterns”
 - Pattern example)
 WHAT IS THE <ATTRIBUTE> OF <PERSON>

- Query example)
 WHAT IS THE HEIGHT OF SUSAN

- Simplified augmented transition network to check whether input sentence matches the patterns
LADDER

- Language Access to Distributed Data with Error Recovery

- LIFER was used on LADDER

- Translating the English query into a hypothetical database query

- Using a system called IDA (Intelligent Data Access), the hypothetical query was transformed into a series of actual database queries that took into account the actual organization of the database

Figure 19.3: Sample interactions with LADDER
19.2.2 CHAT-80

- **Goal**
 - Able to answer rather complex questions, posed in English, about a database of geographical facts

- **Grammar (Definite Clause Grammars (DCGs))**
 - Logical formulas stated in the PROLOG language
 - **Example**
 - Situation: There is a sentence between points S0 and S in a string (of words) if there is a noun phrase with number N (that is, singular or plural) between points S0 and S1, and a verb phrase with number N between points S1 and S.

```
sentence(s(NP,VP), S0,S) :- noun phrase(NP, N, S0,S1), verb phrase(VP, N, S1,S)
```
19.2.2 CHAT-80

Examples of queries that CHAT-80 was able to answer:

Q: What is the capital of Upper Volta?
A: Ouagadougou

Q: Which country's capital is London?
A: united kingdom

Q: What is the ocean that borders African countries and that borders Asian countries?
A: indian ocean

Q: What are the capitals of the countries bordering the Baltic?
A: denmark:copenhagen; east germany:east berlin; finland:helsinki; poland:warsaw; soviet union:moscow; sweden:stockholm; west germany:bonn

Q: What is the total area of countries south of the Equator and not in Australasia?
A: 10,228 ksqmiles

Q: What are the continents no country in which contains more than two cities whose population exceeds 1 million?
A: africa, antarctica, australasia

Q: Which country bordering the Mediterranean borders a country that is bordered by a country whose population exceeds the population of India?
A: turkey
19.2.3 Transportable Natural Language Query Systems

- **Transportable query system**
 - The system can be adapted to serve as natural language front ends to a variety of different databases

- **Examples**
 - ASK, Caltech
 - EUFID, SDC
 - IRUS, BBN
 - LDC-1, Duke University
 - NLP-DBAP, Bell Lab
 - TEAM, SRI
TEAM

- Transportable English Database Access Medium
- Design goals
 - Acquiring information about a database from a DB administrator
 - Interpreting and answering questions of the DB that are posed in a subset of English appropriate for that DB
 - Information needed to adapt and the subject matter acquired from an expert

- Case study for geographical data: 4 Databases (Fig. 19.4)
- DIALOGIC
 - subsystem converting English query into a logical expression
 - Performing syntactic analysis using DIAGRAM (Fig. 19.5 for the example query)

<table>
<thead>
<tr>
<th>WORLD</th>
<th>NAME</th>
<th>CONTINENT</th>
<th>CAPITAL</th>
<th>AREA</th>
<th>POP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>Asia</td>
<td>Kabul</td>
<td>280,000</td>
<td>17,450,000</td>
<td></td>
</tr>
<tr>
<td>Albania</td>
<td>Europe</td>
<td>Tirana</td>
<td>11,100</td>
<td>2,620,000</td>
<td></td>
</tr>
<tr>
<td>Algeria</td>
<td>Africa</td>
<td>Algiers</td>
<td>919,951</td>
<td>18,510,000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOITY</th>
<th>NAME</th>
<th>COUNTRY</th>
<th>POP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brussles</td>
<td>Belgium</td>
<td>1,050,797</td>
<td></td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>Argentina</td>
<td>8,925,000</td>
<td></td>
</tr>
<tr>
<td>Canberra</td>
<td>Australia</td>
<td>210,600</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PEAK</th>
<th>NAME</th>
<th>COUNTRY</th>
<th>HEIGHT</th>
<th>VOL</th>
<th>CONT</th>
<th>NAME</th>
<th>HEMI</th>
<th>AREA</th>
<th>POP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>S</td>
<td>11,500,000</td>
<td>41,200,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antarctica</td>
<td>S</td>
<td>5,000,000</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td>N</td>
<td>16,990,000</td>
<td>2,366,000,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antoagua</td>
<td>Argentina</td>
<td>23,080</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annapurna</td>
<td>Nepal</td>
<td>28,504</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chimborazo</td>
<td>Ecuador</td>
<td>20,702</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 19.4: Files used in a TEAM database

Figure 19.5: A parse tree for “Show each continent's highest peak.”
Chapter 19. Understanding Queries and Signals

19.3 HASP/SIAP
HASP/SIAP

- HASP (Heuristic Adaptive Surveillance Program)
- SIAP (Surveillance Integration Automation Program)

Goal
- Identifying and tracking ships using acoustic data from concealed hydrophone arrays

Blackboard model (used in HEARSAY-II)
- Situation board
 - symbolic model of the unfolding ocean situation of all ships with a confidence level
- Vessels
 - class, location, current speed, course, and destination, each with a confidence weighting
- Sound sources: engines, shafts, propellers and etc.
 - Locations and confidence weightings.
- Spectral features abstracted from the acoustic data

Figure 19.6: A network structure linking data at different levels.
HASP/SIAP

- **KS-link (knowledge source)**
 - Spanning multiple levels and make inferences upward, downward, or within a level
 - KS cause inference
 - Allowing another KS to draw an additional inference, and so on in cascade until all relevant information had been used

- One type of KS: IF-THEN rules
 - IF: a source was lost due to fade-out in the near-past, and a similar source started up in another frequency, and the locations of the two sources are relatively close,
 - THEN: they are the same source with confidence of 3