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The Brain vs. ComputerThe Brain vs. Computer

1. 10 billion neurons 
2. 60 trillion synapses
3. Distributed processing
4. Nonlinear processing
5. Parallel processing

1. Faster than neuron  (10-9 sec)
cf. neuron: 10-3 sec

3. Central processing
4. Arithmetic operation (linearity)
5. Sequential processing



From Biological Neuron to 
Artificial Neuron

From Biological Neuron to 
Artificial Neuron

Dendrite Cell Body Axon



From Biology to 
Artificial Neural Networks

From Biology to 
Artificial Neural Networks



Properties of Artificial Neural NetworksProperties of Artificial Neural Networks

l A network of artificial neurons 

l Characteristics
t Nonlinear I/O mapping
t Adaptivity
t Generalization ability
t Fault-tolerance (graceful 

degradation)
t Biological analogy

<Multilayer Perceptron Network>



Types of ANNsTypes of ANNs

l Single Layer Perceptron (Simple Perceptron)

l Multilayer Perceptron (MLP)

l Radial-Basis Function Network (RBF)

l Hopfield Network

l Boltzmann Machine

l Self-Organization Map (SOM)

l Modular Networks (Committee Machines)



Architectures of NetworksArchitectures of Networks

<Multilayer Perceptron Network> <Hopfield Network>



Problems Appropriate for Neural 
Networks

Problems Appropriate for Neural 
Networks

l Many training examples available

l Outputs can be discrete or continuous-valued or their 

vectors.

May contain noise in training examplesl May contain noise in training examples

l Tolerant to long training time

l Fast execution time

l Not necessary to explain the prediction results



Example ApplicationsExample Applications

l NETtalk [Sejnowski]
t Inputs: English text
t Output: Spoken phonemes

l Phoneme recognition [Waibel]
t Inputs: wave form features
t Outputs: b, c, d,…

l Robot control [Pomerleau]
t Inputs: perceived features
t Outputs: steering control



Application:
Autonomous Land Vehicle (ALV)

Application:
Autonomous Land Vehicle (ALV)

l NN learns to steer an autonomous vehicle.
l 960 input units, 4 hidden units, 30 output units 
l Driving at speeds up to 70 miles per hour

Weight values
for one of the 
hidden units

Image of a
forward -
mounted
camera

ALVINN System



Application:
Data Recorrection by a Hopfield Network

Application:
Data Recorrection by a Hopfield Network

original 
target data

corrupted 
input data

Recorrected 
data after 

Recorrected 
data after 

10 iterations

data after 
20 iterations

Fully
recorrected 
data after 

35 iterations



Perceptron 
and 

Gradient Descent Algorithm

Perceptron 
and 

Gradient Descent AlgorithmGradient Descent AlgorithmGradient Descent Algorithm



Architecture of PerceptronsArchitecture of Perceptrons

l Perceptron = a linear threshold unit (LTU)
t Note: Linear perceptron = linear unit (see below)

l Input: a vector of real values
l Output: 1 or -1 (binary)
l Activation function: threshold function (



Hypothesis Space of  PerceptronsHypothesis Space of  Perceptrons

l Free parameters: weights (and thresholds)
l Learning: choosing values for the weights

l Hypotheses space of perceptron learning

t n: dimension of input vector
t Linear function
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Perceptrons and Decision HyperplanesPerceptrons and Decision Hyperplanes

l Perceptron represents a hyperplane decision surface in the 
n-dimensional space of instances (i.e. points).

l The perceptron outputs 1 for instances lying on one side of 
the hyperplane and outputs -1 for instances lying on the 
other side.other side.

l Equation for the decision hyperplane: 
wx = 0

l Some sets of positive and negative examples cannot be 
separated by any hyperplane 

l Perceptron can not learn a linearly nonseparable problem.
t This is the reason why we need a multilayer perceptron (see below)



Linearly Separable vs. Linearly 
Nonseparable

Linearly Separable vs. Linearly 
Nonseparable

(a) Decision surface for a linearly separable set of examples 
(correctly classified by a straight line)

(b) A set of training examples that is not linearly separable.



Representational Power of PerceptronsRepresentational Power of Perceptrons

l A single perceptron can be used to represent many boolean 
functions. 
t AND function: w0 = -0.8, w1 = w2 = 0.5
t OR function: w0 = -0.3, w1 = w2 = 0.5

l Perceptrons can represent all of the primitive boolean l Perceptrons can represent all of the primitive boolean 
functions AND, OR, NAND, and NOR. 
t Note: Some boolean functions cannot be represented by a single

perceptron (e.g. XOR). Why not?

l Every boolean function can be represented by some 
network of perceptrons only two levels deep. How?
t One way is to represent the boolean function in DNF form (OR of 

ANDs).



Perceptron Training RulePerceptron Training Rule

l Note: output value o is +1 or -1 (not a real)
t Note: for linear perceptrons, the output values can be real (see below for delta rule)

l Perceptron rule: a learning rule for a threshold unit.
l Conditions for convergence

t Training examples are linearly separable.
t Learning rate is sufficiently small.



Delta Rule: Least Mean Square (LMS) 
Error

Delta Rule: Least Mean Square (LMS) 
Error

l Linear unit (linear perceptron)
l Note: output value o is a real value (not binary)

l Delta rule: learning rule for an unthresholded perceptron 
(i.e. linear unit). 
t Delta rule is a gradient-descent rule.



Gradient Descent MethodGradient Descent Method



Delta Rule for Error MinimizationDelta Rule for Error Minimization
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Gradient Descent Algorithm for 
Perceptron Learning

Gradient Descent Algorithm for 
Perceptron Learning



Properties of Gradient DescentProperties of Gradient Descent

l Because the error surface contains only a single global 
minimum, the gradient descent algorithm will converge 
to a weight vector with minimum error, regardless of 
whether the training examples are linearly separable.
t Condition: a sufficiently small learning rate

l If the learning rate is too large, the gradient descent 
search may overstep the minimum in the error surface.
t A solution: gradually reduce the learning rate value.



Conditions for Gradient DescentConditions for Gradient Descent

l Gradient descent is an important general strategy for 
searching through a large or infinite hypothesis space.

l Conditions for gradient descent search
t The hypothesis space contains continuously parameterized t The hypothesis space contains continuously parameterized 

hypotheses (e.g., the weights in a linear unit).
t The error can be differentiated w.r.t. these hypothesis parameters. 



Difficulties with Gradient DescentDifficulties with Gradient Descent

l Converging to a local minimum can sometimes be quite 
slow (many thousands of gradient descent steps).

l If there are multiple local minima in the error surface, then 
there is no guarantee that the procedure will find the global there is no guarantee that the procedure will find the global 
minimum. 



Perceptron Rule vs. Delta RulePerceptron Rule vs. Delta Rule

l Perceptron rule
t Thresholded output (linear threshold unit)
t Converges after a finite number of iterations to a hypothesis that 

perfectly classifies the training data, provided the training 
examples are linearly separable. 

t Linearly separable datat Linearly separable data

l Delta rule
t Unthresholded output (linear unit)
t Converges only asymptotically toward the error minimum, 

possibly requiring unbounded time, but converges regardless of 
whether the training data are linearly separable.

t Linearly nonseparable data



Multilayer PerceptronMultilayer Perceptron



Multilayer Networks and its Decision 
Boundaries

Multilayer Networks and its Decision 
Boundaries

* Decision regions of a multilayer feedforward network.
* The network was trained to recognize 1 of 10 vowel sounds occurring 

in the context “h_d”
* The network input consists of two parameter, F1 and F2, obtained 

from a spectral analysis of the sound.
* The 10 network outputs correspond to the 10 possible vowel sounds.



Differentiable Threshold UnitDifferentiable Threshold Unit

l Sigmoid function: nonlinear, differentiable



Backpropagation (BP) AlgorithmBackpropagation (BP) Algorithm

l BP learns the weights for a multilayer network, given a 
network with a fixed set of units and interconnections.

l BP employs gradient descent to attempt to minimize the 
squared error between the network output values and the squared error between the network output values and the 
target values for these outputs.

l Two stage learning 
t forward stage: calculate outputs given input pattern x.
t backward stage: update weights by calculating delta.



l E defined as a sum of the squared errors over all the 
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Error Function for BP

l E defined as a sum of the squared errors over all the 
output units k for all the training examples d.

l Error surface can have multiple local minima
t Guarantee toward some local minimum
t No guarantee to the global minimum



Backpropagation Algorithm for MLPBackpropagation Algorithm for MLP



l The weight update loop may be iterated thousands of times 
in a typical application.

l The choice of termination condition is important because
t Too few iterations can fail to reduce error sufficiently.
t Too many iterations can lead to overfitting the training data.

Termination Conditions for BPTermination Conditions for BP

t Too many iterations can lead to overfitting the training data.

l Termination Criteria
t After a fixed number of iterations (epochs)
t Once the error falls below some threshold
t Once the validation error meets some criterion



l Original weight update rule for BP:

l Adding momentum a
10      ,)1()( <<-D+=D aahd nwxnw jijijji

Adding Momentum
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t Help to escape a small local minima in the error surface.
t Speed up the convergence.
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Derivation of the BP RuleDerivation of the BP Rule

l Notations

t xij : the ith input to unit j

t wij : the weight associated with the ith input to unit j

t netj : the weighted sum of inputs for unit jt netj : the weighted sum of inputs for unit j

t oj : the output computed by unit j

t tj : the target output for unit j

t s : the sigmoid function

t outputs : the set of units in the final layer of the network

t Downstream(j)  : the set of units whose immediate inputs include 

the output of unit j
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Derivation of the BP Rule

l Error measure:
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l Gradient descent:

l Chain rule:   
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Case 1: Rule for Output Unit WeightsCase 1: Rule for Output Unit Weights

l Step 1:

l Step 2:
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l Step 2:

l Step 3:

l All together:  



å

å

å

å

Î

Î

Î

Î

--=

¶

¶
-=

¶

¶

¶
¶

-=

¶

¶

¶
¶

¶
¶

=
¶
¶

)(

)(

)(

)(

)1(          

          

jDownstreamk
jjkjk

jDownstreamk j

j
kjk

j

j

j

k

jDownstreamk
k

jDownstreamk j

j

j

k

k

d

j

d

oow

net
o

w

net
o

o
net

net
o

o
net

net
E

net
E

d

d

d

Case 2: Rule for Hidden Unit WeightsCase 2: Rule for Hidden Unit Weights

l Step 1:
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BP for MLP: revisitedBP for MLP: revisited



l The error surface for multilayer networks may contain 
many different local minima.

l BP guarantees to converge local minima only.
l BP is a highly effective function approximator in practice.

t The local minima problem found to be not severe in many 

Convergence and Local MinimaConvergence and Local Minima

t The local minima problem found to be not severe in many 
applications. 

* Notes
t Gradient descent over the complex error surfaces represented by 

ANNs is still poorly understood
t No methods are known to predict certainly when local minima 

will cause difficulties.
t We can use only heuristics for avoiding local minima.



Heuristics for Alleviating the Local 
Minima Problem

Heuristics for Alleviating the Local 
Minima Problem

l Add a momentum term to the weight-update rule.

l Use stochastic descent rather than true gradient descent.
t Descend a different error surface for each example.

l Train multiple networks using the same data, but 
initializing each network with different random weights.
t Select the best network w.r.t the validation set
t Make a committee of networks



Why BP Works in Practice?
A Possible Senario

Why BP Works in Practice?
A Possible Senario

l Weights are initialized to values near zero.
l Early gradient descent steps will represent a very smooth 

function (approximately linear). Why? 
t The sigmoid function is almost linear when the total input 

(weighted sum of inputs to a sigmoid unit) is near 0. 

l The weights gradually move close to the global minimum. 
l As weights grow in a later stage of learning, they represent 

highly nonlinear network functions. 
l Gradient steps in this later stage move toward local minima 

in this region, which is acceptable.



l Every boolean function can be represented exactly by 
some network with two layers of units. How?
t Note: The number of hidden units required may grow 

exponentially with the number of network inputs.

Representational Power of MLPRepresentational Power of MLP

l Every bounded continuous function can be approximated 
with arbitrarily small error by a network of two layers of 
units.
t Sigmoid hidden units, linear output units
t How many hidden units?



NNs as Universal Function 
Approximators

NNs as Universal Function 
Approximators

l Any function can be approximated  to arbitrary accuracy 
by a network with three layers of units (Cybenko 1988).
t Sigmoid units at two hidden layers
t Linear units at the output layer
t Any function can be approximated by a linear combination of 

many localized functions having 0 everywhere except for some many localized functions having 0 everywhere except for some 
small region.

t Two layers of sigmoid units are sufficient to produce good 
approximations.



BP Compared with CE & ID3BP Compared with CE & ID3

l For BP, every possible assignment of network weights 
represents a syntactically distinct hypothesis.
t The hypothesis space is the n-dimensional Euclidean space of the n

network weights.

l Hypothesis space is continuous
t The hypothesis space of CE and ID3 is discrete.

l Differentiable
t Provides a useful structure for gradient search.
t This structure is quite different from the general-to-specific 

ordering in CE, or the simple-to-complex ordering in ID3 or C4.5.



l BP has an ability to discover useful intermediate 
representations at the hidden unit layers inside the 
networks which capture properties of the input spaces that 
are most relevant to learning the target function.

Hidden Layer RepresentationsHidden Layer Representations

l When more layers of units are used in the network, more 
complex features can be invented.

l But the representations of  the hidden layers are very hard 
to understand for human.



Hidden Layer Representation for Identity 
Function

Hidden Layer Representation for Identity 
Function



Hidden Layer Representation for Identity 
Function

Hidden Layer Representation for Identity 
Function

* The evolving sum of squared errors for each of the eight 
output units as the number of training iterations (epochs) 
increase



Hidden Layer Representation for Identity 
Function

Hidden Layer Representation for Identity 
Function

* The evolving hidden layer representation for the       
input string “01000000”



Hidden Layer Representation for Identity 
Function

Hidden Layer Representation for Identity 
Function

* The evolving weights for one of the three hidden units



l Continuing training until the training error falls below 
some predetermined threshold is a poor strategy since 
BP is susceptible to overfitting. 
t Need to measure the generalization accuracy over a validation 

set (distinct from the training set).

Generalization and OverfittingGeneralization and Overfitting

l Two different types of overffiting 
t Generalization error first decreases, then increases, even the 

training error continues to decrease.
t Generalization error decreases, then increases, then decreases 

again, while the training error continues to decreases.



Two Kinds of Overfitting PhenomenaTwo Kinds of Overfitting Phenomena



Techniques for Overcoming the 
Overfitting Problem

Techniques for Overcoming the 
Overfitting Problem

l Weight decay
t Decrease each weight by some small factor during each iteration.
t This is equivalent to modifying the definition of E to include a 

penalty term corresponding to the total magnitude of the network 
weights.

t The motivation for the approach is to keep weight values small, to t The motivation for the approach is to keep weight values small, to 
bias learning against complex decision surfaces.

l k-fold cross-validation
t Cross validation is performed k different times, each time using a 

different partitioning of the data into training and validation sets
t The result are averaged after k times cross validation.



Designing an Artificial Neural 
Network for Face Recognition 

Application

Designing an Artificial Neural 
Network for Face Recognition 

Application



l Possible learning tasks
t Classifying camera images of faces of people in various poses.
t Direction, Identity, Gender, ...

l Data: 
t 624 grayscale images for 20 different people

Problem Definition

t 624 grayscale images for 20 different people
t 32 images per person, varying

< person’s expression (happy, sad, angry, neutral)
< direction (left, right, straight ahead, up)
< with and without sunglasses 

t resolution of images: 120 x128, each pixel with a grayscale intensity 
between 0 (black) and 255 (white) 

l Task: Learning the direction in which the person is facing.



Factors for ANN Design in the Face 
Recognition Task

Factors for ANN Design in the Face 
Recognition Task

Input encoding

Output encodingOutput encoding

Network graph structure

Other learning algorithm parameters



Input Coding for Face RecognitionInput Coding for Face Recognition

l Possible Solutions
t Extract key features using preprocessing
t Coarse-resolution

l Features extraction
t edges, regions of uniform intensity, other local image featurest edges, regions of uniform intensity, other local image features
t Defect: High preprocessing cost, variable number of features

l Coarse-resolution 
t Encode the image as a fixed set of 30 x 32 pixel intensity values, 

with one network input per pixel.
t The 30x32 pixel image is a coarse resolution summary of the 

original 120x128 pixel image
t Coarse-resolution reduces the number of inputs and weights to a 

much more manageable size, thereby reducing computational 
demands.



Output Coding for Face RecognitionOutput Coding for Face Recognition

l Possible coding schemes
t Using one output unit with multiple threshold values
t Using multiple output units with single threshold value.

l One unit scheme
t Assign 0.2, 0.4, 0.6, 0.8 to encode four-way classification.t Assign 0.2, 0.4, 0.6, 0.8 to encode four-way classification.

l Multiple units scheme (1-of-n output encoding)
t Use four distinct output units
t Each unit represents one of the four possible face directions, with 

highest-valued output taken as the network prediction



Output Coding for Face RecognitionOutput Coding for Face Recognition

l Advantages of 1-of-n output encoding scheme
t It provides more degrees of freedom to the network for 

representing the target function.
t The difference between the highest-valued output and the second-

highest can be used as a measure of the confidence in the network 
prediction.prediction.

l Target value for the output units in 1-of-n encoding scheme
t < 1, 0, 0, 0 >  v.s. < 0.9, 0.1, 0.1, 0.1 > 
t < 1, 0, 0, 0 >: will force the weights to grow without bound.
t < 0.9, 0.1, 0.1, 0.1 >: the network will have finite weights.



Network Structure for Face RecognitionNetwork Structure for Face Recognition

l One hidden layer  v.s. more hidden layers
l How many hidden nodes is used?

t Using 3 hidden units: 
< test accuracy for the face data = 90%
< Training time = 5 min on Sun Sprac 5< Training time = 5 min on Sun Sprac 5

t Using 30 hidden units: 
< test accuracy for the face data = 91.5%
< Training time = 1 hour on Sun Sparc 5



Other Parameters for Face RecognitionOther Parameters for Face Recognition

l Learning rate h = 0.3
l Momentum a = 0.3
l Weight initialization: small random values near 0
l Number of iterations: Cross validation

t After every 50 iterations, the performance of the network was t After every 50 iterations, the performance of the network was 
evaluated over the validation set.

t The final selected network is the one with the highest accuracy 
over the validation set



ANN for Face Recognition

960 x 3 x 4 network is trained on gray-level images of faces to predict 
whether a person is looking to their left, right, ahead, or up.


