Chapter 11. Knowledge Representation and Reasoning

Lecture Notes on Artificial Intelligence, Spring 2012

Summarized by Ha, Jung-Woo and Lee, Beom-Jin

Biointelligence Laboratory
School of Computer Science and Engineering
Seoul National University

http://bi.snu.ac.kr
Contents

11.1 Deductions in Symbolic Logic
 ■ Deductions in Symbolic Logic

11.2 The Situation Calculus
 ■ The Situation Calculus

11.3 Logic Programming
 ■ Logic Programming

11.4 Semantic Networks
 ■ Semantic Networks

11.5 Scripts and Frames
 ■ Scripts and Frames

Appendix
Overview

- Methods for knowledge representation and reasoning from Mid-1960s and Mid-1970s
 - Symbolic logic and its deductions
 - Predicate calculus
 - For proving theories
 - Situation calculus
 - Logic programming: PROLOG
 - Semantic networks: HAM, MEMS, MENTAL
 - Script and Frames
Introduction

- Knowledge
 - For intelligent system
 - The mean to draw conclusion from or act on

- Knowledge representation
 - Procedural
 - Coordinate and control the specific action (ex. hitting a tennis ball)
 - Programs using the knowledge
 - Specific task program
 - Declarative
 - Declarative sentence (I am a 25 years old)
 - Symbolic structures
 - General task program
Chapter 11. Knowledge Representation and Reasoning

11.1 Deductions in Symbolic Logic
Deductions in Symbolic Logic

- The predicate calculus
 - From Aristotle to G. Boole and McCarthy
 - Ex. Aristotle syllogism
 - 1. \((\forall x)[\text{Man}(x) \supset \text{Mortal}(x)]\)
 (The expression \((\forall x)\) is a way of writing “for all x”; and the expression \(\supset\) is a way of writing "implies that." “\text{Man}(x)\)” is a way of writing “x is a man”; and “\text{Mortal}(x)\)” is a way of writing “x is mortal.” Thus, the entire expression is a way of writing “for all x, x is a man implies that x is mortal” or, equivalently, “all men are mortal.”)
 - 2. \text{Man}(\text{Socrates}) (Socrates is a man.)
 - 3. Therefore, \text{Mortal}(\text{Socrates}) (Socrates is mortal.)
 - “Therefore,” is an example of a deduction
 - Rules of inference (ex. Modus ponens)
Deductions in Symbolic Logic

- **Early works on deduction in symbolic logic**
 - Programs using inference rule (1960s) for proving theorems in the predicate calculus
 - P. Gilmore, H. Wang, and D. Prawitz (IBM)
 - F. Black (Harvard)
 - QA3 (Question Answering)
 - C. C. Green implemented a new deduction method developed by J. A. Robinson
 - From two other statements, a new statement is generated by rules (ex. \(P \lor \neg Q \) and \(P \) produces \(Q \))
 - Key contribution: how resolution could be applied to general expressions in the predicate calculus

- **Example**

- So just as with programs for playing games, LT, and proving geometry theorems, deduction programs need to try many possibilities in their search for a solution
11.2 The Situation Calculus
The Situation Calculus

- **Situation calculus**
 - Where one could write logical statements that explicitly named the situation in which something or other was true
 - Ex. “What is a program for rearranging a list of numbers so that they are in increasing numerical order?”

- **Block case**
 - block A is on top of block B in some situation S
 \[\rightarrow \text{On}(A, B, S) \]
 - block A is blue in all situations
 \[\rightarrow (\forall s)\text{Blue}(A, s) \]
 - there exists some situation in which block A is on block B
 \[\rightarrow (\exists s)\text{On}(A, B, s) \]
 - QA3 can deduce situation calculus \(\rightarrow \) robot plan
Chapter 11. Knowledge Representation and Reasoning

11.3 Logic Programming
Logic Programming

- Green’s automatic programming
 - QA3 can construct simple computer programs
 - The first attempt to write programs using logical statements
- SL-resolution: A. Kowalski and D. Kuehner
- PROLOG (1972)
 - A. Comerauer, P. Roussel, and A. Kowalski
 - An ordered sequence of logical statements
 - The exact order in which these statements are written, along with some other constructs, is the key to efficient program execution

Figure 11.1: Robert Kowalski (top) and Alain Colmerauer (bottom)
11.4 Semantic Networks
Semantic Networks

- **Semantic networks**
 - Another format for representing declarative knowledge

- **Human Associative Memory (HAM)**
 - G. Bower and J. Anderson (1970s)
 - Network-based human memory
 - Parse simple propositional sentences and store them in the semantic network structure
 - With accumulated memory, HAM can answer simple questions

- **MEMS and MENTAL: S. C. Shapiro (1971)**
 - MEMS: a network structure for storing semantic information
 - MENTAL: aided MEMS in deducing new information from that already stored

- **SNePS: S. C. Shapiro**
 - Combination of logical representation with those of network representations used for natural language understanding
Semantic Networks

- Conceptual dependency representations for natural language sentences
 - R. C. Schank
 - People transform natural language sentences into “conceptual structures independent of the particular language where the sentences were expressed.

Figure 11.2: Roger Schank.

Chapter 11. Knowledge Representation and Reasoning

11.5 Scripts and Frames
Scripts and Frames

- **Graphical knowledge representations**
 - Semantic networks and conceptual structures
 - Efficient computationally due to participating in the same chain of reasoning

- **Scripts**
 - Proposed by R. Schank and R. Abelson
 - A script is a way of representing what they call “specific knowledge – detailed knowledge about a situation or event that “we have been through many times.”

- **Example**

- **Frames**
 - Proposed by M. Minsky
 - a data-structure for representing a stereotyped situation, like being in a certain kind of living room, or going to a child's birthday party.
 - Implementation: FRL and KRL
Appendix

Chapter 11. Knowledge Representation and Reasoning
Deductions in Symbolic Logic

- QA3
 - Resolution-based deduction system
 - The advantage of resolution
 - Implemented in programs to make deductions from a set of logical statements consisting of "clauses"
 - Ex.
 - 1. ROBOT(Rob) (Rob is a robot.)
 - 2. $(\forall x)[\text{MACHINE}(x) \supset \neg \text{ANIMAL}(x)]$
 (x is a machine implies that it is not an animal.)
 The system is then asked "Is everything an animal?" by having it attempt to deduce the statement
 - 3. $(\forall x)\text{ANIMAL}(x)$
 QA3 answers "NO" and gives a "counterexample"
 - 4. $x = \text{Rob}$
 (This indicates that $\neg \text{ANIMAL}(\text{Rob})$ contradicts what was to be deduced.)
An example of scripts

Figure 11.4: A scene in the restaurant script. (From Roger C. Schank and Robert P. Abelson, Scripts, Plans, Goals, and Understanding: An Inquiry into Human Knowledge Structures, p. 43, Hillsdale, NJ: Lawrence Erlbaum Associates, 1977.)