

Chapter 17. Speech Recognition and Understanding Systems The Quest for Artificial Intelligence, Nilsson, N. J., 2009.

Lecture Notes on Artificial Intelligence

Summarized by Jang, Ha-Young and Lee, Chung-Yeon

Biointelligence Laboratory School of Computer Science and Engineering Seoul National Univertisy

http://bi.snu.ac.kr

Contents

17.1 Speech Processing

Speech Processing

17.2 The Speech Understanding Study Group

The Speech Understanding Study Group

17.3 The DARPA Speech Understanding Research Program

17.3.1 Work at BBN

17.3.2 Work at CMU

17.3.3 Summary and Impact of the SUR Program

17.4 Subsequent Work in Speech RecognitionSubsequent Work in Speech RecognitionAppendix

Overview of Chapter 17

- Speech processing is divided between speech recognition and speech understanding
- The speech understanding study group
 - Work at BBN
 - Work at CMU
 - Supported by DARPA research progrm
- Subsequent work in speech recognition

17.1 Speech Processing

Speech Precessing

Speech recognition

 Process of converting an acoustic stream of speech input into a text representation of its component.

Speech understanding

Understanding what is spoken.

A speech waveform

Symbol	Example Sound	Symbol	Example Sound
Consonants		Vowels	
[q]	pat	[iv]	lilv
[t]	tom	[ih]	miss
[k]	cat	[ev]	lazv
[b]	boy	[eh]	mess
[d]	dip	[ae]	after
[g]	garment	[aa]	р о р
[m]	mat	[ao]	orchestra
[n]	nut	[uh]	wood
[ng]	si ng	[ow]	lotus
[f]	five	[uw]	t u lip
[v]	do v e	[uh]	butter
[th]	thistle	[er]	bird
[dh]	fea th er	[av]	item
[s]	sat	[aw]	flower
[z]	haze	[ov]	t oi l
[sh]	sma sh	[y uw]	few
[zh]	ambro s ia	[ax]	r u ffian
[ch]	chic	[ix]	lip
[jh]	pa ge	[axr]	leather
[1]	lick	[ux]	dude
[w]	ki w i		
[r]	parse		
[y]	yew		
[h]	horse		
[q]	uh-oh (glottal sto	p)	
[dx]	bu tt er		
[nx]	wi nt er		
[el]	thistle		

Consonants and vowels in the ARPAbet phonetic alphabet

17.2 The Speech Understanding Study Group

The Speech Understanding Study Group

- Feasibility study on a system that can recognize speech
 - Larry Roberts in DARPA and Cordell Green in U.S. Army in early 1970
- Meeting on speech processing
 - Carnegie Mellon University at the end of March 1970
 - Form a 'study group' to make recommendations concerning the launching of DARPA supported project in speech understanding.
- First meeting of the study group
 - BBN on May 26 and 27, 1970
- Final meeting of the study group
 - SDC on July 26-28, 1970

17.3 The DARPA Speech Understanding Research Program

17.3.1 Work at BBN

SPEECHLIS

 Answer spoken questions about the moon rocks database

HWIM

- Travel budget manager's automated assistant
- Respond to spoken questions

- Dragon 👔
 - Designed to understand sentences about chess moves by James K.
 Baker
 - First examples of the use of Hidden Markov Models in Al.
- 🛛 HARPY 📝
 - Bruce T. Lowerre designed and implemented the system
 - Understand spoken sentences and answer questions about, and to retrieve documents from, a database containing abstracts of AI papers
- HEARSAY-II '
 - Understand spoken sentences and answer questions about, and to retrieve documents from, a database containing abstracts of AI papers
 - Blackboard architecture

17.3.3 Summary and Impact of the SUR Program

- More thorough search of potential solutions
- More thorough built-in knowledge of transition phenomena between adjacent words
- More thorough testing, tuning, and debugging

17.4 Subsequent Work in Speech Recognition

Subsequent Work in Speech Recognition

- HMM approach in DRAGON was ultimately adopted by all the leading speech recognition companies
- DARPA began funding speech recognition work again as part of its Strategic Computing program in 1984
- Dragon introduced Dragon NaturallySpeaking, a speech recognition program for personal computers

Appendix

Dragon

- Designed to understand sentences about chess moves by James K. Baker
- First examples of the use of Hidden Markov Models in AI.

HARPY

- Bruce T. Lowerre designed and implemented the system
- Understand spoken sentences and answer questions about, and to retrieve documents from, a database containing abstracts of AI papers

^{© 2011,} SNU CSE Biointelligence Lab., http://bi.snu.ac.kr

HEARSAY-II

- Understand spoken sentences and answer questions about, and to retrieve documents from, a database containing abstracts of AI papers
- Blackboard architecture

