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Why bother with uncertainty?

Uncertainty appears in many tasks

Partial knowledge of the state of the 

world

Noisy observations

Phenomena that are not covered by 

our models

Inherent stochasticity



Recommendation Systems

Your friends

attendedthis

lecturealready

andliked it.

Therefore,we

would like to

recommendit

to you !



3D Scan Data Segmentation

[Anguelov et al. CVPR05, Triebel et al. ICRA06]

How do you recognize the lecture hall?



How do we deal with uncertainty?

Implicit: 

 Ignore what you are uncertain if you can

Build procedures that are robust to 
uncertainty

Explicit:

Build a model of the world that describes 
uncertainty about its state, dynamics, and 
observations

Reason about the effects of actions given 
the model

 Graphical models = explicit, model -based



Probability

•A well-founded framework for uncertainty

•Clear semantics: joint prob. distribution

•Provides principled answersfor:

–Combining evidence

–Predictive & diagnostic reasoning

–Incorporation of new evidence

•Intuitive (at some level) to human experts

•Can automatically be estimated from data



Joint Probability Distribution

 „truth table“ of set                    of random variables

 Any probability we are interested in can be computed from it 

true 1 green 0.001

true 1 blue 0.021

true 2 green 0.134

true 2 blue 0.042

... ... ... ...

false 2 blue 0.2

1X 2X 3X



Representing Prob. Distributions

•Probability distribution = probability for each 

combination of values of these attributes

•Naïve representations (such as tables) run into troubles

–20 attributes require more than 220²106 parameters

–Real applications usually involve hundreds of attributes

Hospital patients described by 

•Background: age, gender, history of diseases, …

•Symptoms: fever, blood pressure, headache, …

•Diseases: pneumonia, heart attack, …



Bayesian Networks - Key Idea

•Bayesian networks 

•utilize conditional independence

•Graphical representationof conditional 

independence respectively “causal” 

dependencies

Exploit regularities !!!



Example

Train

Strike

Martin

Late

Norman

Late

Project

Delay

Office

Dirty

Boss

Angry

Boss

Failure-in-Love

Martin

Oversleep

Norman

Oversleep

Use a DAG to model the causality.



Example
Norman

oversleep
Probability

T 0.2

F 0.8

Train

Strike

Martin

Late

Norman

Late

Project

Delay

Office

Dirty

Boss

Angry

Boss

Failure-in-Love

Martin

Oversleep

Norman

Oversleep

Attach prior probabilities to all root nodes

Train
Strike

Probability

T 0.1

F 0.9

Martin
oversleep

Probability

T 0.01

F 0.99

Boss
failure-in-love

Probability

T 0.01

F 0.99



Example

Train strike

T F

Martin oversleep

T F T F

Martin 

Late

T 0.95 0.8 0.7 0.05

F 0.05 0.2 0.3 0.95

Train

Strike

Martin

Late

Norman

Late

Project

Delay

Office

Dirty

Boss

Angry

Boss

Failure-in-Love

Martin

Oversleep

Norman

Oversleep

Attach prior probabilities to non-root nodes

Norman

untidy

Norman oversleep

T F

Norman

untidy

T 0.6 0.2

F 0.4 0.8

Each column is summed to 1.



Example
Boss Failure-in-love

T F

Project Delay

T F T F

Office Dirty

T F T F T F T F

Boss 

Angry

very 0.98 0.85 0.6 0.5 0.3 0.2 0 0.01

mid 0.02 0.15 0.3 0.25 0.5 0.5 0.2 0.02

little 0 0 0.1 0.25 0.2 0.3 0.7 0.07

no 0 0 0 0 0 0 0.1 0.9

Train

Strike

Martin

Late

Norman

Late

Project

Delay

Office

Dirty

Boss

Angry

Boss

Failure-in-Love

Martin

Oversleep

Norman

Oversleep

Norman

untidy

Each column is summed to 1.

Attach prior probabilities to non-root nodes



Inference



A Bayesian Network

The “ICU alarm” network

 37 binary random variables

 509 parameters instead of
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Bayesian Networks

1. Finite, directed acyclic graph

2. Nodes:  (discrete) random variables

3. Edges: direct influences

4. Associated with each node: a table re

presenting a conditional probability dis

tribution (CPD), quantifying the effect t

he parents have on the node

MJ

E B

A



Bayesian Networks

X1 X2

X3

(0.2, 0.8) (0.6, 0.4)

true 1 (0.2,0.8)

true 2 (0.5,0.5)

false 1 (0.23,0.77)

false 2 (0.53,0.47)
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Cf. Markov Networks

 Undirected graphs

 Nodes = random variables

 Cliques = potentials (~ local jpd)



Fielded Applications

•Expert systems

ÁMedical diagnosis (Mammography)

ÁFault diagnosis (jet-engines, Windows 98)

•Monitoring

ÁSpace shuttle engines (Vista project)

ÁFreeway traffic, Activity Recognition

•Sequence analysis and classification

ÁSpeech recognition (Translation, Paraphrasing

ÁBiological sequences (DNA, Proteins, RNA, ..)

•Information access 

ÁCollaborative filtering

Á Information retrieval & extraction 

… among others ?



Graphical Models

Graphical Models (GM)

Causal Models Chain Graphs Other Semantics

Directed GMsDependency Networks Undirected GMs

Bayesian Networks

DBNs
FST

HMMs

Factorial HMM Mixed
Memory Markov Models

BMMs

Kalman

Segment Models

Mixture 
Models

Decision 
Trees Simple 

Models

PCA

LDA

Markov Random
Fields / Markov 

networks

Gibbs/Boltzman
Distributions
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22Bayesian Networks

¸Bayesian network
§DAG (Directed Acyclic Graph) 

§Express dependence relations between variables

§Can use prior knowledgeon the data(parameters)

A         B        C     

P(A,B,C,D,E) = P(A)P(B|A)P(C|B)

P(D|A,B)P(E|B,C,D)

D        E    
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