Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation

Hanock Kwak
2016-11-22 (Tue.)
BI Lab
Seoul National University
Abstract

- Simple, elegant solution to translate between multiple languages.
- Introduces an artificial token at the beginning of the input sentence to specify the required target language.
 - The rest of the model is shared across all languages.
- Single multilingual model surpasses state-of-the-art results on WMT’14 and WMT’15 benchmarks.
- Transfer learning and zero-shot translation is possible.

Key Features

• Simplicity
 • The model is same for all languages.
 • Any new data is simply added.

• Low-resource language improvements
 • All parameters are implicitly shared by all the language pairs.
 • This forces the model to generalize across language boundaries during training.

• Zero-shot translation
 • The model implicitly learns to translate between language pairs it has never seen.
 • ex) Train Portuguese→English and English→Spanish
 • Then it can generate Portuguese→Spanish. 😊
Evolution of Neural Translation Machine

- We'll start with a traditional encoder decoder machine translation model and keep evolving it until it matches GNMT

http://smerity.com/articles/2016/google_nmt_arch.html
V1: Encoder-decoder

- The encoder spits out a hidden state.
- This hidden state is then supplied to the decoder, which generates the sentence in language B
V2: Attention based encoder-decoder

- The encoder query each output asking how relevant they are to the current computation on the decoder side
V3: Bi-directional encoder layer

• We would like the annotation of each word to summarize not only the preceding words, but also the following words.
V4: "The deep is for deep learning"
V5: Parallelization

• To begin computation at one of the nodes, all of the nodes pointing toward you must already have been computed.

• A layer $i + 1$ can start its computation before layer i is fully finished.
V6: Residuals are the new hotness

- One solution for vanishing gradients is residual networks.
- The idea of a layer computing an identity function
Visualization

• A t-SNE projection of the embedding of 74 semantically identical sentences translated across all 6 possible directions
Source Language Code-Switching

• Mixing Japanese and Korean in the source produces correct English translations.

 • **Japanese:** 私は東京大学の学生です。 → I am a student at Tokyo University.
 • **Korean:** 나는 도쿄 대학의 학생입니다. → I am a student at Tokyo University.
 • **Mixed Japanese/Korean:** 私は東京大学 학생입니다. → I am a student of Tokyo University.
Weighted Target Language Selection

• We test what happens when we mix target languages.

<table>
<thead>
<tr>
<th>Japanese/Korean:</th>
<th>I must be getting somewhere near the centre of the earth.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_{ko} = 0.00$</td>
<td>私は地球の中心の近くにどこかに行っているに違いない。</td>
</tr>
<tr>
<td>$w_{ko} = 0.40$</td>
<td>私は地球の中心近くのどこかに着いているに違いない。</td>
</tr>
<tr>
<td>$w_{ko} = 0.56$</td>
<td>私は地球の中心近くのどこかになっているに違いない。</td>
</tr>
<tr>
<td>$w_{ko} = 0.58$</td>
<td>私は地ぐの中心の加かイはれてだら也道者多し向よりばに。</td>
</tr>
<tr>
<td>$w_{ko} = 0.60$</td>
<td>息子をれずのカワノカイはれてだら也道者多し向よりばに。</td>
</tr>
<tr>
<td>$w_{ko} = 0.70$</td>
<td>息子をれずの加かイはれてだら也道者多し向よりばに。</td>
</tr>
<tr>
<td>$w_{ko} = 0.90$</td>
<td>息子をれずの加かイはれてだら也道者多し向よりばに。</td>
</tr>
<tr>
<td>$w_{ko} = 1.00$</td>
<td>息子をれずの加かイはれてだら也道者多し向よりばに。</td>
</tr>
</tbody>
</table>