Chapter 4: Particle Filters

September 27, 2010

Byoung-Tak Zhang

School of Computer Science and Engineering &
Cognitive Science and Brain Science Programs
Seoul National University

http://bi.snu.ac.kr/~btzhang/
Overview

- Filtering Problem
- Sequential Bayesian Filtering
- Particle Filter
- Monte Carlo (MC) Approximation
- MC with Importance Sampling (IS)
- Sequential Importance Sampling (SIS)
- Sampling Importance Resampling (SIR)
Filtering / Tracking

- We want to track the unknown state x of a system as it evolves over time based on the (noisy) observations y that arrive sequentially.
Dynamical System

x_t is state vector at time t, y_t is observations at time t

State equation $p(x_t | x_{t-1})$

Observation equation $p(y_t | x_t)$

Note: The forms of $p(x_t | x_{t-1})$ and $p(y_t | x_t)$ depend on the state transition function $f_x(\cdot)$ and observation function $f_y(\cdot)$.

State equation: $x_t = f_X(x_{t-1}, u_t)$

f_X state transition function

u_t process noise with known distribution

Observation equation: $y_t = f_Y(x_t, v_t)$

f_Y observation function

u_t observation noise with known distribution
Filtering Problem

• The objective is to estimate unknown state x_t, based on a sequence of observations y_t, $t=0,1,\ldots$

Find posterior distribution $p(x_{0:t} \mid y_{1:t})$

• By knowing posterior distribution (of the states) a number of estimates can be computed, e.g. the expected value of some function $f(.)$ that depends on the state values:

$$E[f(x_{0:t})] = \int f(x_{0:t}) p(x_{0:t} \mid y_{1:t}) dx_{0:t}$$
Formally...

Let:

State vector $x_{0:t} = (x_0, ..., x_t)$

Observation vector $y_{1:t} = (y_1, ..., y_t)$

Find:

PDF $p(x_{0:t} | y_{1:t})$ posterior distribution

or $p(x_t | y_{1:t})$ filtering distribution

Given:

$p(x_0)$ prior distribution (on state)

$p(x_t | x_{t-1})$ transition probability (e.g., motor model)

$p(y_t | x_t)$ observation probability (e.g., sensor model)
$p(x_0)$ is given.
$t = 0$, observe y_0.

Update \[p(x_0 | y_0) = \frac{p(y_0 | x_0)}{p(y_0)} p(x_0) \] (Bayes theorem)

Predict \[p(x_1 | y_0) = \int p(x_1 | x_0) p(x_0 | y_0) dx_0 \] (Markovian)

$t = 1$, observe y_1 from x_1

Update \[p(x_1 | y_1) = \frac{p(y_1 | x_1)}{p(y_1)} p(x_1) \]

Predict \[p(x_2 | y_1) = \int p(x_2 | x_1) p(x_1 | y_1) dx_1 \]

$t = 2$, observe y_2 from x_2

Update \[p(x_2 | y_{1:2}) = \frac{p(y_2 | x_2)}{p(y_2 | y_1)} p(x_2 | y_1) \]

Predict \[p(x_3 | y_{1:2}) = \int p(x_3 | x_2) p(x_2 | y_{1:2}) dx_2 \]

$t = 3$, observe y_3 from x_3

Update \[p(x_3 | y_{1:3}) = \frac{p(y_3 | x_2)}{p(y_3 | y_{1:3})} p(x_2 | y_{1:2}) \]

Predict \[p(x_4 | y_{1:3}) = \int p(x_4 | x_3) p(x_3 | y_{1:3}) dx_3 \]
Sequential Bayesian Filtering

Given $p(x_{t-1} \mid y_{1:t-1})$... prior (filtering) distribution (i.e., before observing y_t)

1. Prediction

$$p(x_t \mid y_{1:t-1}) = \int_{x_{t-1}} p(x_t \mid x_{t-1}) p(x_{t-1} \mid y_{1:t-1}) dx_{t-1} \tag{Eqn. 1}$$

since $p(x_t \mid y_{1:t-1}) = \int_{x_{t-1}} p(x_t, x_{t-1} \mid y_{1:t-1}) dx_{t-1}$

$$= \int_{x_{t-1}} p(x_t \mid x_{t-1}, y_{1:t-1}) p(x_{t-1} \mid y_{1:t-1}) dx_{t-1}$$

note: $p(a) = \int_b p(a, b) db$ and $p(a, b \mid c) = p(a \mid b, c)p(b \mid c)$

2. Update ... posterior distribution (after observing y_t)

$$p(x_t \mid y_{1:t}) = \frac{p(y_t \mid x_t) p(x_t \mid y_{1:t-1})}{p(y_t \mid y_{1:t-1})} \tag{Eqn. 2}$$

where $p(y_t \mid y_{1:t-1}) = \int_{x_t} p(y_t \mid x_t) p(x_t \mid y_{1:t-1}) dx_t$
Graphically...

1. Predict
 \[p(x_t|y_{1:t-1}) \]

0.5 Transition
 \[p(x_{t-1}|y_{1:t-1}) \]

0. Start (prior)

1.5 Observe (likelihood)
 \[p(y_t|x_t) \]

2. Update (posterior)
 \[p(x_{t+1}|y_{1:t}) \]
A Special Case: Kalman Filter

\[p(x_{t-1} \mid y_{1:t-1}) = N(x_{t-1} \mid m_{t-1|t-1}, P_{t-1|t-1}) \]
\[p(x_t \mid y_{1:t-1}) = N(x_t \mid m_{t|t-1}, P_{t|t-1}) \]
\[p(x_t \mid y_{1:t}) = N(x_t \mid m_{t|t}, P_{t|t}) \]

\[m_{t|t-1} = F_t m_{t-1|t-1} \]
\[P_{t|t-1} = Q_{t-1} + F_t P_{t-1|t-1} F_t^T \]

... linear and Gaussian ...

\[x_t = F_t x_{t-1} + v_{t-1}, \quad v_{t-1} \sim N(0, Q_{t-1}) \]
\[y_t = H_t x_t + n_t, \quad n_t \sim N(0, R_t) \]

\(F_t \): transition matrix (known)
\(H_t \): observation matrix (known)
Particle Filters

• Particle filter is a technique for implementing recursive Bayesian filter by Monte Carlo sampling
• The idea is to represent the posterior density by a set of random samples (particles) with associated weights.
 – Compute estimates based on these samples and weights.
• Many different names....
 – Sequential Monte Carlo (SMC)
 – Condensation method
 – Survival of the fittest (evolutionary computation?)
Advantages of Particle Filters

- Ability to represent arbitrary densities
 - Can deal with non-linearities
 - Non-Gaussian noise
- Particle filters focus adaptively on probable regions of state space
 - In contrast, HMM filters discretize the state space to N fixed states.
- Can be implemented in O(Ns)
 - Ns: sample size
 - Easy to implement
 - Easy to parallelize
Sample-Based PDF Representation

- Monte Carlo characterization of pdf
- Represent posterior density by a set of random i.i.d. samples (particles) from the pdf $p(x_{0:t} | y_{1:t})$
- For large number N of particles equivalent to functional description of pdf
- For $N \rightarrow \infty$, Monte Carlo method approaches optimal Bayesian estimate.
Monte Carlo (MC) Approximation

\[E_p[f(x)] = \int p(x)f(x)dx \]

\[\approx \frac{1}{N} \sum_{i=1}^{N} f(x^{(i)}), \quad x^{(i)} \sim p(x) = N(0, \sigma^2) \]

- Monte Carlo approach
 1. Simulate N random variables from p(x), e.g. Normal distribution
 \[x^{(i)} \sim p(x) = N(0, \sigma^2) \]
 2. Compute the average
 \[E_p[f(x)] = \frac{1}{N} \sum_{i=1}^{N} f(x^{(i)}), \]
MC with Importance Sampling

\[E_p[f(x)] = \int_x p(x) f(x) dx \]

\[= \int_x \frac{p(x)}{q(x)} q(x) f(x) dx \]

\[\approx \sum_{i=1}^{N} w_i f(x^{(i)}) \]

\[x^{(i)} \sim q(x) \quad q(x): \text{proposal distribution} \]

\[w_i = \frac{p(x^{(i)})}{q(x^{(i)})} \quad w_i: \text{importance weight} \]

Note: \(q(x) \) is easier to sample from than \(p(x) \).
Importance Sampling (IS)

\[
E[f(x_{0:t})] = \int f(x_{0:t}) p(x_{0:t} \mid y_{1:t}) dx_{0:t}
\]

\[
\approx \sum_{i=1}^{N} w_i f(x_{0:t}^{(i)})
\]

\[
x_{0:t}^{(i)} \sim q(x_{0:t} \mid y_{1:t}) \quad q(x): \text{proposal distribution}
\]

\[
w_i = \frac{p(x_{0:t}^{(i)} \mid y_{1:t})}{q(x_{0:t}^{(i)} \mid y_{1:t})} \quad w_i: \text{importance weight}
\]
Importance Sampling: Procedure

1. Draw N samples $x_{0:t}^{(i)}$ from proposal distribution $q(.)$.

 $$x_{0:t}^{(i)} \sim q(x_{0:t} \mid y_{1:t})$$

2. Compute importance weight

 $$w(x_{0:t}^{(i)}) = \frac{p(x_{0:t}^{(i)} \mid y_{1:t})}{q(x_{0:t}^{(i)} \mid y_{1:t})}$$

3. Estimate an arbitrary function $f(.)$:

 $$E[f(x_{0:t} \mid y_{1:t})] \approx \sum_{i=1}^{N} f(x_{0:t}^{(i)}) \tilde{w}_t^{(i)}, \quad \tilde{w}_t^{(i)} = \frac{w(x_{0:t}^{(i)})}{\sum_{j=1}^{N} w(x_{0:t}^{(j)})}$$
Sequential Importance Sampling (SIS): Recursive Estimation

Augmenting the samples

\[
q(x_{0:t} \mid y_{1:t}) = q(x_{0:t-1} \mid y_{1:t-1})q(x_t \mid x_{0:t-1}, y_{1:t}) \\
= q(x_{0:t-1} \mid y_{1:t-1})q(x_t \mid x_{t-1}, y_t)
\]

\[x_t^{(i)} \sim q(x_t \mid x_{t-1}, y_t)\]

(cf. non-sequential IS: \(x_t^{(i)} \sim q(x_{0:t} \mid y_{1:t})\))

Weight update

\[
w_t^{(i)} \propto w_{t-1}^{(i)} \frac{p(y_t \mid x_t^{(i)})p(x_t^{(i)} \mid x_{t-1}^{(i)})}{q(x_t^{(i)} \mid x_{t-1}^{(i)}, y_t)}
\]
Sequential Importance Sampling: Idea

- Update filtering density using Bayesian filtering
- Compute integrals using importance sampling

- The filtering density $p(x_t | y_{1:t})$ is represented using particles and their weights

$$ \{x_t^{(i)}, w_t^{(i)}\}_{i=1}^N $$

- Compute weights using:

$$ w_t^{(i)} = \frac{p(x_t^{(i)}, y_{1:t})}{q(x_t^{(i)}, y_{1:t})} $$
Sequential Importance Sampling:
Procedure

1. Particle generation
 \[x_t^{(i)} \sim q(x_t | x_{t-1}^{(i)}, y_t) = p(x_t | x_{t-1}^{(i)}) \]

2. Weight computation
 \[w_t^{(i)} = w_{t-1}^{(i)} p(y_t | x_t^{(i)}) \]
 Weight normalization
 \[\tilde{w}_t^{(i)} = \frac{w_t^{(i)}}{\sum_{j=1}^{N} w_t^{(j)}} \]

3. Estimation computation
 \[E[f(x_t | y_{1:t})] = \sum_{i=1}^{N} f(x_t^{(i)}) \tilde{w}_t^{(i)} \]

Note: Step 1 above assumes the proposal density to be the prior.
This does not use the information from observations. Alternatively,
the proposal density could be

\[x_t^{(i)} \sim q(x_t | x_{t-1}^{(i)}, y_t) = p(x_t | x_{t-1}^{(i)}, y_t) \]

that minimizes the variance of \(w_t \) (Doucet el al., 1999).
Resampling

- SIS suffers from degeneracy problems, i.e. a small number of particles have big weights and the rest have extremely small values.
- Remedy: SIR introduces a selection (resampling) step to eliminate samples with low importance ratios (weights) and multiply samples with high importance ratios.
- Resampling maps the weighted random measure on to the equally weighted random measure by sampling uniformly with replacement from \(\{ x_{0:t}^{(i)} \}_{i=1}^{N} \) with probabilities \(\{ w_{t}^{(i)} \}_{i=1}^{N} \):

\[
\{ \tilde{x}_{0:t}^{(i)} , N^{-1} \}_{i=1}^{N} \sim \{ x_{0:t}^{(i)} , w_{t}^{(i)} (x_{0:t}^{(i)}) \}_{i=1}^{N}
\]
Sampling Importance Resampling (SIR) = Sequential Monte Carlo = Particle Filter

1. Initialize $t \leftarrow 0$
 - For $i = 1, \ldots, N$: sample $x_t^{(i)} \sim p(x_0)$, $t \leftarrow 1$.

2. Importance sampling
 - For $i = 1, \ldots, N$: sample $x_t^{(i)} \sim q(x_t | x_t^{(i)}, y_t) = p(x_t | x_t^{(i)})$
 Let $x_{0:t}^{(i)} \equiv (x_{0:t-1}^{(i)}, x_t^{(i)})$
 - For $i = 1, \ldots, N$: compute weights $w_t^{(i)} = p(y_t | x_t^{(i)})$
 - Normalize the weights: $\tilde{w}_t^{(i)} = w_t^{(i)} / \sum_{j=1}^{N} w_t^{(j)}$

3. Resampling
 - Resample with replacement N particles $x_{0:t}^{(i)}$ according to the importance weights $w_t^{(i)}$, resulting in $\{\tilde{x}_{0:t}^{(i)} , N^{-1}\}_{i=1}^{N}$.
 - New particle population $\{x_{0:t}^{(i)}\}_{i=1}^{N} \leftarrow \{\tilde{x}_{0:t}^{(i)}\}_{i=1}^{N}$.
 - Set $t \leftarrow t + 1$ and go to step 2.
References (Slides)

- Dellaert, F., Tutorial on Monte Carlo Methods: Part 2 - Particle Filters, Georgia Inst. of Tech., slide file 2007.
- Pfeiffer, M., A Brief Introduction to Particle Filters, TU Graz, slide file, 2004.