Motivation of computational biology

- Organize, classify and parse the sequence data
- Behind the string of bases or amino acids is the whole complexity of molecular biology
- Capturing some of this complexity
- Direct experimentation is the most reliable way to determine a biological molecule’s structure or function
- Obtaining DNA sequence of the gene for an RNA or protein is far easier than direct experimentation
- Biological information can be inferred from sequence alone.
- HMM is used for statistical analysis of sequence

Sequence similarity, homology, and alignment

- Two sequences are homologous
 - New sequences are adapted from pre-existing sequences rather than invented de novo.
 - Nature is a tinkerer and not an inventor [Jacob 1977]
 - We are transforming information by homology.
- Alignment between two strings
 - Evolving sequences accumulate insertions, deletions, substitutions
 - Scoring of alignment can be very complex.
 - Probabilistic modeling methods

Overview of the book

- Pairwise alignment
 - Pairwise alignment (2),
 - Markov chains and hidden Markov models (3),
 - Pairwise alignment using HMMs (4)
- Multiple alignment
 - Profile HMMs for sequence families (5)
 - Multiple sequence alignment methods (6)
- Phylogenetic trees
 - Building phylogenetic trees (7)
 - A probabilistic approach to phylogeny (8)
- RNA structure
 - Transformational grammars (9)
 - RNS structure analysis (10)
Probabilities and probabilistic models (1)

- Model: a system that simulates the objects (or sequences) under consideration
- Probabilistic model: one that produces different outcomes with different probabilities
 - (Example 1) A model of a roll of a dice have six parameters
 - (Example 2) A model of a sequence of three consecutive rolls [1, 6, 3]
- Biological sequences: a strings from a finite alphabet (4 nucleotides or 20 amino acids)

Probabilities and probabilistic models (2)

- Maximum likelihood estimation: maximize $P(D | \theta)$
- Overfitting: from a limited amount of data the model is well adapted to the training data but not generalize well to a new data
 - (Ex) $[TTT]$: $p(H) = 0$, $p(T) = 1$
- Conditional, joint and marginal probabilities
 - Probability of rolling i given dice 1: $p(i | D_1)$
 - Probability of picking dice j and rolling an i: $p(i, D_j) = p(D_j) p(i | D_j)$
 - Probability of rolling i: $p(i) = \sum_j p(D_j) p(i | D_j)$

Probabilities and probabilistic models (3)

- Bayes theorem and model comparison
 - Testing of fair dice: Pick a dice at random and roll it for 3 times,
 $p(\text{unfair dice} | (5,5,5)) = \frac{p((5,5,5) | \text{unfair dice}) p(\text{unfair dice})}{p((5,5,5))}$
 - Protein sequence: extracellular proteins have a slightly different amino acid composition than intracellular proteins.
 - Test whether a new sequence is extracellular or not:
 $p(\text{ext} | x) = \frac{p(x | \text{ext}) p(\text{ext})}{p(x)} = \frac{p^{\text{ext}} \prod q_{i,x}^{\text{ext}}}{p(x)}$

Probabilities and probabilistic models (4)

- Bayes theorem and parameter estimation (MAP)
 - $p(\theta | D) = \frac{p(\theta) p(D | \theta)}{\int_{\theta'} p(\theta') p(D | \theta')}$
 - (E.g.) Roll a dice to have $\{1,3,4,2,4,6,2,1,2,2\}$:
 - MLE (P5) = 0
 - Use of pseudo-count for the insufficient data