Predicting Exon/Intron using HMM, GA and NN

2002. 11. 20
이인희

Project Summary

• Previous work
 – Use GA to find HMM parameter
 – Drawbacks
 • Too few population
 • Too few training data

• Extend previous work by two ways
 – GA fine-tuning (or use ES)
 – Use HMM training algorithm as local optimization
System Overview

1. HMM + GA (1)
 - Chromosome: HMM parameter
 - Fitness: likelihood of each HMM
 - Evolve HMM parameter by GA (or ES)

2. HMM + GA (2)
 - Chromosome: HMM structure
 - Fitness: likelihood of each HMM
 - After training each HMM, evolve HMM structure by GA

3. HMM + NN
 - Train HMM for exon/intron
 - Train NN with HMM outputs

Data

- UCSC dataset
 - single_exon_GB.dat : 186 genes
 - Multi_exon_GB.dat : 304 genes