The Growth of Functions

Section 3.2
Section Summary

- Big-O Notation
- Big-O Estimates for Important Functions
- Big-Omega and Big-Theta Notation

Edmund Landau (1877-1938)
Paul Gustav Heinrich Bachmann (1837-1920)

Donald E. Knuth
(Born 1938)
The Growth of Functions

- In both computer science and in mathematics, there are many times when we care about how fast a function grows.
- In computer science, we want to understand how quickly an algorithm can solve a problem as the size of the input grows.
 - We can compare the efficiency of two different algorithms for solving the same problem.
 - We can also determine whether it is practical to use a particular algorithm as the input grows.
 - We’ll study these questions in Section 3.3.
- Two of the areas of mathematics where questions about the growth of functions are studied are:
 - number theory (covered in Chapter 4)
 - combinatorics (covered in Chapters 6 and 8)
Big-O Notation

Definition: Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that $f(x)$ is $O(g(x))$ if there are constants C and k such that

$$|f(x)| \leq C|g(x)|$$

whenever $x > k$. (illustration on next slide)

- This is read as “$f(x)$ is big-O of $g(x)$” or “g asymptotically dominates f.”
- The constants C and k are called *witnesses* to the relationship $f(x)$ is $O(g(x))$. Only one pair of witnesses is needed.
Illustration of Big-O Notation

\[f(x) \text{ is } O(g(x)) \]

The part of the graph of \(f(x) \) that satisfies \(f(x) < Cg(x) \) is shown in color.
Some Important Points about Big-O Notation

- If one pair of witnesses is found, then there are infinitely many pairs. We can always make the k or the C larger and still maintain the inequality $|f(x)| \leq C|g(x)|$.
- Any pair C' and k' where $C < C'$ and $k < k'$ is also a pair of witnesses since $|f(x)| \leq C|g(x)| \leq C'|g(x)|$ whenever $x > k' > k$.

You may see “$f(x) = O(g(x))$” instead of “$f(x)$ is $O(g(x))$.”
- But this is an abuse of the equals sign since the meaning is that there is an inequality relating the values of f and g, for sufficiently large values of x.
- It is ok to write $f(x) \in O(g(x))$, because $O(g(x))$ represents the set of functions that are $O(g(x))$.
- Usually, we will drop the absolute value sign since we will always deal with functions that take on positive values.
Using the Definition of Big-O Notation

Example: Show that \(f(x) = x^2 + 2x + 1 \) is \(O(x^2) \).

Solution: Since when \(x > 1 \), \(x < x^2 \) and \(1 < x^2 \)

\[
0 \leq x^2 + 2x + 1 \leq x^2 + 2x^2 + x^2 = 4x^2
\]

- Can take \(C = 4 \) and \(k = 1 \) as witnesses to show that

\[
f(x) \text{ is } O(x^2) \quad \text{(see graph on next slide)}
\]

- Alternatively, when \(x > 2 \), we have \(2x \leq x^2 \) and \(1 < x^2 \).

Hence, \(0 \leq x^2 + 2x + 1 \leq x^2 + x^2 + x^2 = 3x^2 \) when \(x > 2 \).

- Can take \(C = 3 \) and \(k = 2 \) as witnesses instead.
Illustration of Big-O Notation

\[f(x) = x^2 + 2x + 1 \text{ is } O(x^2) \]
Big-O Notation

- Both $f(x) = x^2 + 2x + 1$ and $g(x) = x^2$ are such that $f(x)$ is $O(g(x))$ and $g(x)$ is $O(f(x))$. We say that the two functions are of the same order. (More on this later)

- If $f(x)$ is $O(g(x))$ and $h(x)$ is larger than $g(x)$ for all positive real numbers, then $f(x)$ is $O(h(x))$.

- Note that if $|f(x)| \leq C|g(x)|$ for $x > k$ and if $|h(x)| > |g(x)|$ for all x, then $|f(x)| \leq C|h(x)|$ if $x > k$. Hence, $f(x)$ is $O(h(x))$.

- For many applications, the goal is to select the function $g(x)$ in $O(g(x))$ as small as possible (up to multiplication by a constant, of course).
Using the Definition of Big-O Notation

Example: Show that $7x^2$ is $O(x^3)$.

Solution: When $x > 7$, $7x^2 < x^3$. Take $C = 1$ and $k = 7$ as witnesses to establish that $7x^2$ is $O(x^3)$.

(Would $C = 7$ and $k = 1$ work?)

Example: Show that n^2 is not $O(n)$.

Solution: Suppose there are constants C and k for which $n^2 \leq Cn$, whenever $n > k$. Then (by dividing both sides of $n^2 \leq Cn$ by n, then $n \leq C$ must hold for all $n > k$. A contradiction!)
Big-O Estimates for Polynomials

Example: Let \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \)
where \(a_0, a_1, \ldots, a_n \) are real numbers with \(a_n \neq 0 \).

Then \(f(x) \) is \(O(x^n) \).

Proof: \[
|f(x)| = |a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0|
\leq |a_n| x^n + |a_{n-1}| x^{n-1} + \cdots + |a_1| x + |a_0|
= x^n \left(|a_n| + \frac{|a_{n-1}|}{x} + \cdots + \frac{|a_1|}{x^{n-1}} + \frac{|a_0|}{x^n} \right)
\leq x^n \left(|a_n| + \frac{|a_{n-1}|}{x} + \cdots + |a_1| + |a_0| \right)
\]

Assuming \(x > 1 \)

- Take \(C = |a_n| + |a_{n-1}| + \cdots + |a_1| + |a_0| \) and \(k = 1 \). Then \(f(x) \) is \(O(x^n) \).
- The leading term \(a_n x^n \) of a polynomial dominates its growth.

Uses triangle inequality, an exercise in Section 1.8.
Example: Use big-O notation to estimate the sum of the first n positive integers.

Solution:

$$1 + 2 + \cdots + n \leq n + n + \cdots n = n^2$$

$1 + 2 + \ldots + n$ is $O(n^2)$ taking $C = 1$ and $k = 1$.

Example: Use big-O notation to estimate the factorial function

$$f(n) = n! = 1 \times 2 \times \cdots \times n.$$

Solution:

$$n! = 1 \times 2 \times \cdots \times n \leq n \times n \times \cdots \times n = n^n$$

$n!$ is $O(n^n)$ taking $C = 1$ and $k = 1$.

Continued →
Big-O Estimates for some Important Functions

Example: Use big-O notation to estimate \(\log n! \)

Solution: Given that \(n! \leq n^n \) (previous slide)

then \(\log(n!) \leq n \cdot \log(n) \).

Hence, \(\log(n!) \) is \(O(n \cdot \log(n)) \) taking \(C = 1 \) and \(k = 1 \).
Display of Growth of Functions

Note the difference in behavior of functions as n gets larger
Useful Big-O Estimates Involving Logarithms, Powers, and Exponents

- If $d > c > 1$, then
 \[n^c \text{ is } O(n^d), \text{ but } n^d \text{ is not } O(n^c). \]
- If $b > 1$ and c and d are positive, then
 \[(\log_b n)^c \text{ is } O(n^d), \text{ but } n^d \text{ is not } O((\log_b n)^c). \]
- If $b > 1$ and d is positive, then
 \[n^d \text{ is } O(b^n), \text{ but } b^n \text{ is not } O(n^d). \]
- If $c > b > 1$, then
 \[b^n \text{ is } O(c^n), \text{ but } c^n \text{ is not } O(b^n). \]
Combinations of Functions

- If \(f_1(x) \) is \(O(g_1(x)) \) and \(f_2(x) \) is \(O(g_2(x)) \) then
 \((f_1 + f_2)(x) \) is \(O(\max(|g_1(x)|,|g_2(x)|)) \).

 - See next slide for proof

- If \(f_1(x) \) and \(f_2(x) \) are both \(O(g(x)) \) then
 \((f_1 + f_2)(x) \) is \(O(g(x)) \).

 - See text for argument

- If \(f_1(x) \) is \(O(g_1(x)) \) and \(f_2(x) \) is \(O(g_2(x)) \) then
 \((f_1 f_2)(x) \) is \(O(g_1(x)g_2(x)) \).

 - See text for argument
Combinations of Functions

- If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then
 $(f_1 + f_2)(x)$ is $O(\max(|g_1(x)|,|g_2(x)|))$.

- By the definition of big-O notation, there are constants C_1, C_2, k_1, k_2 such that
 $|f_1(x)| \leq C_1 |g_1(x)|$ when $x > k_1$ and $f_2(x) \leq C_2 |g_2(x)|$ when $x > k_2$.

- $|(f_1 + f_2)(x)| = |f_1(x) + f_2(x)|$
 \hspace{1cm} \leq |f_1(x)| + |f_2(x)| \hspace{1cm} \text{by the triangle inequality} |a + b| \leq |a| + |b|$

- $|f_1(x)| + |f_2(x)| \leq C_1 |g_1(x)| + C_2 |g_2(x)|$
 \hspace{1cm} \leq C_1 |g(x)| + C_2 |g(x)| \hspace{1cm} \text{where} \ g(x) = \max(|g_1(x)|,|g_2(x)|)$
 \hspace{1cm} = (C_1 + C_2) |g(x)|$
 \hspace{1cm} = C |g(x)| \hspace{1cm} \text{where} \ C = C_1 + C_2$

- Therefore $|(f_1 + f_2)(x)| \leq C |g(x)|$ whenever $x > k$, where $k = \max(k_1,k_2)$.
Ordering Functions by Order of Growth

Put the functions below in order so that each function is big-O of the next function on the list.

- $f_1(n) = (1.5)^n$
- $f_2(n) = 8n^3 + 17n^2 + 111$
- $f_3(n) = (\log n)^2$
- $f_4(n) = 2^n$
- $f_5(n) = \log (\log n)$
- $f_6(n) = n^2 (\log n)^3$
- $f_7(n) = 2^n (n^2 + 1)$
- $f_8(n) = n^3 + n(\log n)^2$
- $f_9(n) = 10000$
- $f_{10}(n) = n!$

We solve this exercise by successively finding the function that grows slowest among all those left on the list.

- $f_9(n) = 10000$ (constant, does not increase with n)
- $f_5(n) = \log (\log n)$ (grows slowest of all the others)
- $f_3(n) = (\log n)^2$ (grows next slowest)
- $f_6(n) = n^2 (\log n)^3$ (next largest, $(\log n)^3$ factor smaller than any power of n)
- $f_7(n) = 8n^3 + 17n^2 + 111$ (tied with the one below)
- $f_8(n) = n^3 + n(\log n)^2$ (tied with the one above)
- $f_4(n) = 2^n$ (next largest, an exponential function)
- $f_{10}(n) = 3^n$ (grows faster than above because of the $n^2 + 1$ factor)
- $f_{10}(n) = n!$ (grows faster than c^n for every c)
Big-Omega Notation

Definition: Let \(f \) and \(g \) be functions from the set of integers or the set of real numbers to the set of real numbers. We say that \(f(x) \) is \(\Omega(g(x)) \) if there are constants \(C \) and \(k \) such that

\[
|f(x)| \geq C|g(x)| \quad \text{when } x > k.
\]

- We say that “\(f(x) \) is big-Omega of \(g(x) \).”
- Big-\(O \) gives an upper bound on the growth of a function, while Big-Omega gives a lower bound. Big-Omega tells us that a function grows at least as fast as another.
- \(f(x) \) is \(\Omega(g(x)) \) if and only if \(g(x) \) is \(O(f(x)) \). This follows from the definitions. See the text for details.

\(\Omega \) is the upper case version of the lower case Greek letter \(\omega \).
Big-Omega Notation

Example: Show that $f(x) = 8x^3 + 5x^2 + 7$ is $\Omega(g(x))$ where $g(x) = x^3$.

Solution: $f(x) = 8x^3 + 5x^2 + 7 \geq 8x^3$ for all positive real numbers x.
- Is it also the case that $g(x) = x^3$ is $O(8x^3 + 5x^2 + 7)$?
Big-Theta Notation

Definition: Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. The function $f(x)$ is $\Theta(g(x))$ if $f(x)$ is $O(g(x))$ and $f(x)$ is $\Omega(g(x))$.

- We say that “f is big-Theta of $g(x)$” and also that “$f(x)$ is of order $g(x)$” and also that “$f(x)$ and $g(x)$ are of the same order.”
- $f(x)$ is $\Theta(g(x))$ if and only if there exists constants C_1, C_2 and k such that $C_1g(x) < f(x) < C_2g(x)$ if $x > k$. This follows from the definitions of big-O and big-Ω.

Θ is the upper case version of the lower case Greek letter θ.
Big Theta Notation

Example: Show that the sum of the first n positive integers is $\Theta(n^2)$.

Solution: Let $f(n) = 1 + 2 + \cdots + n$.

- We have already shown that $f(n)$ is $O(n^2)$.
- To show that $f(n)$ is $\Omega(n^2)$, we need a positive constant C such that $f(n) > Cn^2$ for sufficiently large n. Summing only the terms greater than $n/2$ we obtain the inequality

$$
1 + 2 + \cdots + n \geq \left\lceil \frac{n}{2} \right\rceil + \left(\left\lceil \frac{n}{2} \right\rceil + 1 \right) + \cdots + n
$$

$$
\geq \left\lceil \frac{n}{2} \right\rceil + \left\lceil \frac{n}{2} \right\rceil + \cdots + \left\lceil \frac{n}{2} \right\rceil
$$

$$
= (n - \left\lfloor \frac{n}{2} \right\rfloor + 1) \left\lceil \frac{n}{2} \right\rceil
$$

$$
\geq \frac{n}{2} \left(\frac{n}{2} \right) = \frac{n^2}{4}
$$

- Taking $C = \frac{1}{4}$, $f(n) > Cn^2$ for all positive integers n. Hence, $f(n)$ is $\Omega(n^2)$, and we can conclude that $f(n)$ is $\Theta(n^2)$.
Big-Theta Notation

Example: Show that \(f(x) = 3x^2 + 8x \log x \) is \(\Theta(x^2) \).

Solution:

- \(3x^2 + 8x \log x \leq 11x^2 \) for \(x > 1 \), since \(0 \leq 8x \log x \leq 8x^2 \).
 - Hence, \(3x^2 + 8x \log x \) is \(O(x^2) \).
- \(x^2 \) is clearly \(O(3x^2 + 8x \log x) \)
- Hence, \(3x^2 + 8x \log x \) is \(\Theta(x^2) \).
Big-Theta Notation

- When \(f(x) \) is \(\Theta(g(x)) \) it must also be the case that \(g(x) \) is \(\Theta(g(x)) \).

- Note that \(f(x) \) is \(\Theta(g(x)) \) if and only if it is the case that \(f(x) \) is \(O(g(x)) \) and \(g(x) \) is \(O(f(x)) \).

- Sometimes writers are careless and write as if big-\(O \) notation has the same meaning as big-Theta.
Big-Theta Estimates for Polynomials

Theorem: Let \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \)
where \(a_0, a_1, \ldots, a_n \) are real numbers with \(a_n \neq 0 \).
Then \(f(x) \) is of order \(x^n \) (or \(\Theta(x^n) \)).

(The proof is an exercise.)

Example:
The polynomial \(f(x) = 8x^5 + 5x^2 + 10 \) is order of \(x^5 \) (or \(\Theta(x^5) \)).
The polynomial \(f(x) = 8x^{199} + 7x^{100} + x^{99} + 5x^2 + 25 \)
is order of \(x^{199} \) (or \(\Theta(x^{199}) \)).