Question

• What is(are) the condition(s) that makes an agent useful in scheduling meeting? (explain with examples…)

Contents

• Scheduling of Meetings
• Scheduling Agents
• Calendar Apprentice – decision tree based
• Learning interface agent
 – Memory-based learning
• Some Calendaring Systems
• Conclusion

Scheduling of Meetings (1/2)

• Features
 – Meeting Type, Attendees, Date, Time, Duration, Location, Confirmation, etc.
• Actions
 – Accept/reject.
 – Schedule.
 – Reschedule.
 – Negotiate meeting times.

Scheduling Agents (2/2)

• A learning interface agent
• Automating the scheduling task according to the unique habits of the user
• Conditions*
 – Involve a substantial amount of repetitive behavior of user
 – And, this repetitive behavior is potentially different for different users

Calendar Apprentice*(1/6)

• Typical Training Example of a Calendar Meeting
 – User-entered information

request:5-27-1992-48:
 attendees: thrun
event-type:meeting
date:29 5 1992
time:1430
duration:30
location:weh5309
confirmed?:yes
Calendar Apprentice(2/6)

– Automatically collected information

displayed-week: (25 5 1992)
action-time: 2915977709
action-date: (27 5 1992)
previous-prompt: confirmed=yes

Calendar Apprentice(3/6)

– Additional features inferred by the system

position-attendees: project-scientist
previous-attendees-meeting: request-5-20-1992-1
next-attendees-meeting: none
businesstime: no
number-of-attendees: 1
cmu-attendees?: yes
day-in-week: Friday
attended-in-team-group?: yes
known-attendees?: yes
day-in-week: Friday
end-time: 1500
busyness-of-attendees: 2
single-attendee?: yes

Calendar Apprentice(4/6)

• Rules from those training example

If Position-of-attendees is Grad-Student, and
Single-attendee? is Yes, and
Sponsor-of-attendees is Mitchell;
Then Duration is 60.
[Training: 6/11 Test: 51/86]

If Group-name is EDRC-Directors;
Then Duration is 90.
[Training: 6/6 Test: 31/38]

Calendar Apprentice(5/6)

• Learning Procedure

• Update the performance statistics
• Window-Examples : the most recent 180 training example meetings
• Training-Examples : 120 examples selected at random from Window-Examples
• Test-Examples : Window-Examples – Training-Examples

Calendar Apprentice(6/6)

• Learning Procedure (cont’)

• For each feature f in {Duration, Location, Time, Day-of-week}
 – Learn a decision tree to predict values of feature f →
 using “ID3 algorithm” applied to Training-Examples
 – Convert each path of the learned decision tree into a rule
 – Remove any rule preconditions not decreasing performance for this rule over the Window-Examples
 – Record the number of positive and negative examples it matches from window-examples for each new rule
 – Sort each rule into the previous rules for feature f, based on their accuracy

Learning Interface Agent*

• Memory-Based Learning
 – Situation-action pairs
 – Distance of features
 – Confidence of agent about prediction
• Reinforcement Learning
• Suggesting a meeting time
Memory-Based Learning (1/4)

- Distance between a new situation and a memorized situation
 - Score: $\sum_{i=1}^{n} \frac{1}{d_i}$
 - d_i: weighted sum of distances between the values
 - S: the set of memorized situations
 - Selecting highest score
 - Computation of weight and distance metrics when new situation being added \rightarrow time-consuming $O(n^2)$

Memory-Based Learning (2/4)

- Confidence of prediction
 - $d_{predicted}$: distance to the closest situation with the same action as the predicted one
 - d_{other}: distance to the closest situation with a different action from the predicted one
 - M: number of situations considered in making a decision

$$\frac{d_{predicted}}{d_{other}} \times m$$

- m: the number of situations considered in making a decision

Memory-Based Learning (3/4)

- Confidence of prediction (cont’)
 - $n_{predicted}$: the number of the closest m situations with distances less than a given maximum with the same action as the predicted one
 - n_{max}: minimum 1 or the number of the closest m situations with distances within the same maximum with different actions than the predicted
 - $n_{total} = n_{predicted} + n_{other}$

Memory-Based Learning (4/4)

- Reinforcement Learning in Scheduling meeting
 - Priority Weighting

<table>
<thead>
<tr>
<th>A</th>
<th>P</th>
<th>Accept</th>
<th>Decline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept</td>
<td>–</td>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>Decline</td>
<td>Negative</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

- P: prediction of agent, A: action of user

Suggesting A Meeting Time

- Candidate times t_1, t_2, \ldots, t_m
- People p_1, p_2, \ldots, p_n
- Preferences r_{ij}: p_i’s preference rating for t_j
- Priorities q_{ij}: p_i’s assessment of the relative importance of person p_j ($\forall i q_{ii} = 0$) in the range $[-100, +100]$
- Convenience of any given time t_k

$$I_k = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} q_{ij} \right)$$

Meeting Maker $^\text{TM*}(1/5)$

New Activity
Lotus Organizer(3/9)
Invite

Lotus Organizer(4/9)
Communication via e-mail

Lotus Organizer(5/9)
Inviting message

Lotus Organizer(6/9)
Status Update

Lotus Organizer(7/9)
Confirming invitation

Lotus Organizer(8/9)
Confirmation message
Lotus Organizer (9/9)

Canceling

Sun Calendar Server*

Crosswind Synchronize (web-based)*

Crosswind Synchronize (web-based)

Yahoo! Calendar*

Yahoo! Calendar
Others

• Crosswind Synchronize
 • http://www.crosswind.com/sitemap.htm#sync

• Web-based
 – Oscal
 • http://www.obsidian.co.za/text/demo.html
 – Bantu
 • http://www4.bantu.com/

Conclusion

• Agent’s learning method
 – Decision tree
 – Memory-based learning

• Commercial complete agents
 – not yet found

• Weakness of web-based scheduling meeting
 – Response time, user-interface

References (1/2)

References (2/2)

