Bayesian Evolutionary Computation, Importance Sampling, Sequential Monte Carlo, Particle Filters, and Active Learning

2001 Bioinformatics Course Supplement
SNU Biointelligence Lab
http://bi.snu.ac.kr/

Evolutionary Computation: A (Very) Brief Introduction
Outline of Evolutionary Computation

- A Brief History of Evolutionary Computation
- Properties of Evolutionary Algorithms
- Terminology
- Evolutionary Operators
- Simple Evolutionary Algorithm
- Bayesian Evolutionary Algorithms

Evolutionary Computation

- Evolutionary computation is inspired from natural selection and evolution in the nature.
- 1960s, John Holland: Genetic Algorithms
 - To study the phenomenon of adaptation as it occurs in nature (not to solve specific problems)
- 1960s, Fogel, Owens, and Walsh: Evolutionary Programming
 - To find finite-state machines
- 1960s, Rechenberg: Evolution Strategies
 - A method used to optimize real-valued parameters for devices
Properties of Evolutionary Algorithms

- Global population-based random search algorithms
- Simulate the principle of evolution (survival of the fittest).
- Maintain a population of potential solutions (individuals) through repeated application of some “evolutionary” operators.
- Yield individuals with successively improved fitness, and converge, hopefully, to the fittest individuals representing optimum solutions.
- Although GS, EP and ES were originally developed for different purposes, they all have been successfully applied to solve global optimization problem.

Terminology

- **Chromosome**
 - Candidate solution to a problem
 - Often encoded as a bit string
- **Genes**
 - Single bit or short blocks of adjacent bits that encode a particular element of the candidate solution
- **Crossover**
 - Exchanging genetic material between two single chromosome parents
- **Mutation**
 - Flipping the bit at randomly chosen locus
Evolutionary Operators

- Selection
 - Select chromosomes in the population for reproduction.
 - The fitter the chromosome, the more times it is likely to be selected to reproduce
- Crossover
 - Randomly choose a locus and exchanges the subsequences before and after that locus between two chromosomes to create two offspring
- Mutation
 - Randomly flips some of the bits in a chromosome.

A Simple Evolutionary Algorithm

1. Start with a randomly generated population
2. Determine the fitness of each individual in the population
3. Repeat the following steps
 a) Perform crossover with probability p_c
 b) Perform mutation the two offspring with probability p_m
 c) Determine the fitness of each individual
 d) Perform selection
until some stopping criterion applies
Bayesian Evolutionary Computation

- A probabilistic model of evolutionary computation for learning and optimization [Zhang, 1999]
 - [Zhang & Shin, 2000] [Cho & Zhang, 2000] [Shin, Cho, & Zhang, 2001] [Lee & Zhang, 2001]
- Explicitly estimate the posterior distribution of the individuals and then sample offspring from the distribution

![Bayesian Evolutionary Computation Diagram]

BEC: History and Current Issues

- Evolutionary computation as Bayesian inference [Zhang & Muehlenbein, 1993]
- Distribution estimation algorithms [Baluja & Caruana, 1995] [Muehlenbein & Paass, 1996]
- Evolving neural trees by BEA [Zhang & Joung, 1998]
- Bayesian evolutionary algorithms for learning and optimization [Zhang, 1999]
- Probabilistic PCA for estimation [Cho & Zhang, 2001]
- Connections to particle filters [Lee & Zhang, 2001]
- Evolving neural trees by BEC with PPCA [Cho & Zhang, 2001]
Outline of Importance Sampling

- Generalized Importance Sampling
- Bayesian Importance Sampling
- Sequential Importance Sampling
- Choice of Proposal Distribution
- Selection (Resampling)
- Sequential Monte Carlo Methods (Particle Filters)
 - Brief History
- Particle Filter Algorithm
Generalized Importance Sampling (1/2)

- We are interested in computing expectation $E_{P(x)} f(x)$
- Draw independent points from a simpler “proposal” distribution Q
- Weight these points by $w(x) = P(x)/Q(x)$ to obtain a “fair” representation of P

$$E_{Q(x)} f(x)w(x) = \sum_{x \in X} [f(x)w(x)]Q(x) = \sum_{x \in X} \left[f(x) \frac{P(x)}{Q(x)} \right]Q(x)$$

$$= \sum_{x \in X} f(x)P(x) = E_{P(x)} f(x)$$

- If $Q=P$, above formula reduces to simple Monte Carlo estimation formula.

Generalized Importance Sampling (2/2)

- Importance sampling is effective when Q approximates P over most of the domain.
- There are no absolute requirements for how well Q approximates P, except that Q must not zero anywhere P is non-zero.
- It fails when Q misses high probability regions of P and systematically yields samples with small weights.
- To overcome this problem it is critical to obtain data points from importance regions of P.
- Explicitly searching for significant regions in the target distribution P.
Problem Formulation: Dynamic State Space Model

- Transition equation \(p(x_t \mid x_{t-1}) \) and measurement’s equation \(p(y_t \mid x_t) \)
 - \(x_t \in \mathbb{R}^{n_x} \) denotes the states (hidden variables, parameter)
 - \(y_t \in \mathbb{R}^{n_y} \) observations at time \(t \)

- Goal
 - Approximate the posterior \(p(x_{0:t} \mid y_{1:t}) \)
 - One of its marginals, the filtering density \(p(x_t \mid y_{1:t}) \)

Bayesian Importance Sampling

- Impossible to sample directly from the posterior \(p(x_{0:t} \mid y_{1:t}) \)
- Sample from an easy-to-sample, proposal distribution \(q(x_{0:t} \mid y_{1:t}) \)

\[
E(g_t(x_{0:t})) = \int g_t(x_{0:t}) \frac{p(x_{0:t} \mid y_{1:t})}{q(x_{0:t} \mid y_{1:t})} q(x_{0:t} \mid y_{1:t}) dx_{0:t}
\]

\[
= \int g_t(x_{0:t}) \frac{p(y_{1:t} \mid x_{0:t}) p(x_{0:t})}{p(y_{1:t}) q(x_{0:t} \mid y_{1:t})} q(x_{0:t} \mid y_{1:t}) dx_{0:t}
\]

\[
= \int g_t(x_{0:t}) \frac{w_t(x_{0:t})}{p(y_{1:t})} q(x_{0:t} \mid y_{1:t}) dx_{0:t}
\]
(cont'd)

\[
E(g_t(x_{0:t})) = \frac{1}{N} \sum_{i=1}^{N} g_t(x_{0:t}^{(i)}) w_t(x_{0:t}^{(i)})
\]

\[
= \frac{1}{N} \sum_{i=1}^{N} g_t(x_{0:t}^{(i)}) w_t(x_{0:t}^{(i)})
\]

\[
= \sum_{i=1}^{N} \frac{g_t(x_{0:t}^{(i)}) w_t(x_{0:t}^{(i)})}{w_t(x_{0:t}^{(i)})}
\]

Sequential Importance Sampling

- Proposal distribution

\[
q(x_0:t | y_{1:t}) = q(x_0 | y_{1:t}) \prod_{j=1}^{t} q(x_j | x_{1:j-1}, y_{1:j})
\]

- Assumptions
 - State: Markov process
 - Observations: independent given states
We can sample from the proposal and evaluate likelihood & transition probability, generate a prior set of samples and iteratively compute the importance weights w_t.

\[
w_t = \frac{p(y_{1:t} \mid x_{0:t}) p(x_{0:t})}{q(x_{0:t-1} \mid y_{1:t-1}) q(x_t \mid x_{0:t-1}, y_{1:t-1})} = w_{t-1} \frac{p(y_t \mid x_t) p(x_t \mid x_{t-1})}{q(x_t \mid x_{0:t-1}, y_{1:t})}
\]

Choice of Proposal Distribution

- Minimize variance of the importance weights

\[
q(x_t \mid x_{0:t-1}, y_{1:t}) = p(x_t \mid x_{0:t-1}, y_{1:t})
\]

- Popular choice

\[
q(x_t \mid x_{0:t-1}, y_{1:t}) = p(x_t \mid x_{t-1})
\]

- Move samples towards the region of high likelihood
Selection (Resampling)

- Variance of importance ratios increases stochastically over time.
- To avoid degeneracy of the Sequential Importance Sampling algorithm, a selection(resampling) stage may be used.
- Eliminate samples with low importance ratios and multiply samples with high importance ratios.
- Associate to each sample $x^{(i)}_{0:t}$ a number of children N_i such that $\sum_{i=1}^{N} N_i = N$

Sequential Monte Carlo Method (Particle Filtering): Brief History

- Basic sequential Monte Carlo methods introduced in the automatic control field in the late 1960s.
 - Handschin and Mayne (1969) tackled the problem of nonlinear filtering with a sequential importance sampling approach
- Many variations, but based on sequential importance sampling
 - Degenerate with time
- Inclusion of a resampling stage in early 1990s
- Many variations proposed in statistical and signal processing group
- Recently: Discovery of connections between sampling-importance resampling (SIR) and evolutionary algorithms.
Particle Filter Algorithm

- **Sequential importance sampling step**
 - For $i=1,...,N$, sample: $(\tilde{x}_t^{(i)}) \sim q(x_t | x_{0:t-1}^{(i)}, y_{1:t})$
 - and set: $(\tilde{x}_0^{(i)}) \equiv (x_{0:t-1}^{(i)}, \tilde{x}_t^{(i)})$
 - For $i=1,...,N$, evaluate importance weights up to a normalizing constant:
 $$w_t^{(i)} = \frac{p(x_t | y_{1:t})}{q(x_t | x_{0:t-1}^{(i)}, y_{1:t}) p(x_{0:t-1}^{(i)} | y_{1:t-1})}$$
 - For $i=1,...,N$, normalize importance weights:
 $$\tilde{w}_t^{(i)} = w_t^{(i)} \left[\sum_{j=1}^N w_j^{(j)} \right]^{-1}$$

- **Selection (resampling) step**
 - Multiply/suppress samples $(\tilde{x}_0^{(i)})$ with high/low importance weights $\tilde{w}_t^{(i)}$, respectively, to obtain random samples $(\tilde{x}_0^{(i)})$ approximately distributed $p(x_0 | y_{1:t})$

- **MCMC step**
 - Apply a Markov transition kernel with invariant distribution given by $p(x_0 | y_{1:t})$ to obtain $(x_0^{(i)})$

What’s Next? Active Evolution!!

- Learning and inference in probabilistic graphical models, such as Bayesian networks, are usually time-consuming.
- Active and adaptive sampling is necessary for efficient learning and inference.
- Active selection of training examples, a.k.a. active learning, may accelerate the learning process.
- MCMC provides a sound theoretical basis of learning and evolutionary algorithms for building probabilistic graphical models, including hidden Markov models, Bayesian networks, and Helmholtz machines.
- Sequential importance sampling as active learning or evolution.
- Active evolutionary algorithms? Natural evolution seems not very active or goal-directed, but systems evolving and learning actively seems at least more intelligent and more useful from the AI point of view.