Chapter 1: Introduction

Byoung-Tak Zhang

Biointelligence Laboratory
School of Computer Science and Engineering &
Cognitive Science and Brain Science Programs
Seoul National University

http://bi.snu.ac.kr/
Outline

• Motivating examples
 – AI: Vision, Language, Robotics
 – BI: Brain and Cognitive Science

• Dynamical systems
 – Definition
 – Types

• Learning in dynamical systems
 – Sequential/online
 – Learning and action interleaved
Vision: Target Tracking

- Multiple people tracking
 (http://www.youtube.com/watch?v=sk9WY79w8oM&feature=related)
Speech Recognition

• The virtual personal assistant on your phone (Siri) (http://www.youtube.com/watch?v=MpjpVAB06O4)
Language Generation

Multimodal conversational agents
(http://www.techfak.uni-bielefeld.de/ags/wbski/media/MAXMTV.MPG)
Graphics: Motion Planning

- Real-time scalable motion planning for crowds
 (http://www.youtube.com/watch?v=ifimWFs5-hc)
Robotics: Path/Motion Planning

Motion planning for multiple mobile robots

Example experiment on the Micro-Autonomous RoverS (MARS) test-platform involving 5 robots and 3 obstacles. (C.M. Clark et al., IEEE International Conference on Robotics and Automation, 2003)
Robotics: Localization

- Real-time localization in indoor with stereo vision
 (http://www.youtube.com/watch?v=m3L8OfbTXH0&NR=1)
Dynamical Systems
Dynamical systems

• **System**: a (physical) entity which can be manipulated with actions, called **inputs** \((u)\) and that, as a consequence of the actions, gives a measurable reaction, called **output** \((y)\)

• **Dynamic**: the system **changes over time**; in general, the output does not only depend on the input, but also on the current “**state**” of the system \((x)\), i.e. on the system **history**
Dynamical system

\[y_{t+1} = f(y_{t-H:t}, u_t; x_t) \]
Graphical model

observation

state

control
Modeling a dynamical system

- Two ingredients:
 - State transition function
 \[x_{t+1} = f(x_t, u_t) \]
 - Observation function
 \[y_t = g(x_t) \]
Main classes of dynamical systems

- Continuous / discrete
- Linear / nonlinear
- Time invariant / variant systems
- Single / multiple input / outputs
- Deterministic / stochastic
Discrete and continuous systems

- **Discrete**: the time set is the set of integer numbers \((t=1,2,...,k,...)\). The system is typically modeled with difference equations

\[
\begin{align*}
x_{k+1} &= f(x_k, u_k), \\
y_k &= h(x_k)
\end{align*}
\]

- **Continuous**: the time set is the set of non-negative real numbers. The system is typically modeled with differential equations

\[
\begin{align*}
\frac{dx}{dt} &= f(x_t, u), \\
x_{t_0} &= x_0, \\
y_t &= h(x_t)
\end{align*}
\]
Learning in Dynamical Systems
Dynamic Learning

• Target system
 – Changing environment
 – Moving target (can be nonstationary)
 – Sequential decision making
 – Action (control) selection
 – Prediction/forecasting

• Learning system
 – Sequential observation of data
 – Online learning (vs. batch learning)
 – Interactive learning (action interleaved)
 – Sequential/recursive estimation
 – Short-term vs. long-term objectives
Course Objectives

• Review existing models for dynamic learning
• Develop a sequential Bayesian framework for dynamic learning
• Emphasis on Monte Carlo filtering methods, such as particle filters
• Establish the connection between particle filtering and evolutionary optimization
• Construct graphical models for dynamic Bayesian learning from video (language + vision) stream data
Project

• Given
 – A sequence of \(T \) image-text pairs of \(Y(t) = (V(t), L(t)), t=1,\ldots,T \)
 – \(V(t) \): a vector of visual words, \(L(t) \): a vector of linguistic words
 – E.g., from a 20-minute episode of Friends
• Construct
 – A dynamic system that learns to estimate the (mental memory) states to generate the future image-text sequences from a historical context of size \(H \):

\[
y_{t+1} = f(y_{t-H:t}, u_t, x_t)
\]

• To demonstrate
 – Visual storytelling: Given a sequence of pairs of \((V(h), L(h)), h = t, t-1, t-2, ..., t-H, \) generate \((V(r), L(r))\) for \(r = t+1, t+2, t+3, ..., t+R \)
Dynamic Learning Memory
Project: Visual Storytelling

- **Observation**: \(y_{t-2}, y_{t-1} \)
- **State**: \(x_{t-2}, x_{t-1} \)
- **Control**: \(u_{t-2}, u_{t-1} \)

Prediction

- **Generated**: \(y_t, y_{t+1} \)
- **Given**: "Take a look at this"
- "I don't know what happened"