Chapter 8: Conditional Random Fields

November 1, 2010

Byoung-Tak Zhang

School of Computer Science and Engineering & Cognitive Science and Brain Science Programs
Seoul National University

http://bi.snu.ac.kr/~btzhang/
Overview

• Motivating Applications
 – Sequence Segmentation and Labeling

• Generative vs. Discriminative Models
 – HMM, MEMM

• CRF
 – From MRF to CRF
 – Learning Algorithms

• HMM vs. CRF
Motivating Application: Sequence Labeling

• Pos Tagging

[He/PRP] [reckons/VBZ] [the/DT] [current/JJ] [account/NN] [deficit/NN] [will/MD] [narrow/VB] [to/TO] [only/RB] [#/#] [1.8/CD] [billion/CD] [in/IN] [September/NNP] [./.]

• Term Extraction

 Rockwell International Corp.’s Tulsa unit said it signed a tentative agreement extending its contract with Boeing Co. to provide structural parts for Boeing’s 747 jetliners.

• Information Extraction from Company Annual Report
Sequence Segmenting and Labeling

• Goal: mark up sequences with content tags
• Computational linguistics
 – Text and speech processing
 – Topic segmentation
 – Part-of-speech (POS) tagging
 – Information extraction
 – Syntactic disambiguation
• Computational biology
 – DNA and protein sequence alignment
 – Sequence homolog searching in databases
 – Protein secondary structure prediction
 – RNA secondary structure structure analysis
Binary Classifier vs. Sequence Labeling

- Case restoration
 - jack utilize outlook express to retrieve emails
 - E.g. SVMs vs. CRFs
Sequence Labeling Models: Overview

• HMM
 – Generative model
• MEMM
 – Conditional model
• CRFs
 – Conditional model without label bias problem
 – Linear-Chain CRFs
 – Non-Linear Chain CRFs
 • Modeling more complex interaction between labels: DCRFs, 2D-CRFs
 • E.g. Sutton and McCallum (2004), Zhu and Nie (2005)
Generative Models: HMM

• Based on joint probability distribution $P(y,x)$
• Includes a model of $P(x)$ which is not needed for classification
• Interdependent features
 – either enhance model structure to represent them (→ complexity problems)
 – or make simplifying independence assumptions (e.g. naive Bayes)
• Hidden Markov models (HMMs) and stochastic grammars
 – Assign a joint probability to paired observation and label sequences
 – The parameters typically trained to maximize the joint likelihood of train examples
Hidden Markov Model

\[P(s, x) = P(s_1)P(x_1 \mid s_1) \prod_{i=2}^{n} P(s_i \mid s_{i-1})P(x_i \mid s_i) \]

Cannot represent multiple interacting (overlapping) features or long range dependences between observed elements.
Conditional Models

- **Difficulties and disadvantages of generative models**
 - Need to enumerate all possible observation sequences
 - Not practical to represent multiple interacting features or long-range dependencies of the observations
 - Very strict independence assumptions on the observations

- **Conditional Models**
 - Conditional probability $P(y|x)$ rather than joint probability $P(y, x)$ where $y =$ label sequence and $x =$ observation sequence.
 - Based directly on conditional probability $P(y|x)$
 - Need no model for $P(x)$
 - Specify the probability of possible label sequences given an observation sequence
 - Allow arbitrary, non-independent features on the observation sequence X
 - The probability of a transition between labels may depend on past and future observations
 - Relax strong independence assumptions in generative models
Discriminative Models: MEMM

- Maximum entropy Markov model (MEMM)
 - Exponential model
- Given a training set \((X, Y)\) of observation sequences \(X\) and label sequences \(Y\):
 - Train a model \(\theta\) that maximizes \(P(Y|X, \theta)\)
 - For a new data sequence \(x\), the predicted label \(y\) maximizes \(P(y|x, \theta)\)
 - Notice the per-state normalization

\[
P(y' | y, x) = \frac{1}{Z(y, x)} \exp \left(\sum_k \lambda_k \frac{f_k(x, y, y')}{\text{weight}} \right)
\]

- MEMMs have all the advantages of conditional models
- Per-state normalization: all the mass that arrives at a state must be distributed among the possible successor states (“conservation of score mass”)
- Subject to Label Bias Problem
 - Bias toward states with fewer outgoing transitions
Maximum Entropy Markov Model

\[P(s \mid x) = P(s_1 \mid x_1) \prod_{i=2}^{n} P(s_i \mid s_{i-1}, x_i) \]

Label bias problem: the probability transitions leaving any given state must sum to one
Conditional Markov Models (CMMs) aka MEMMs aka Maxent Taggers vs. HMMs

\[P(s, o) = \prod_i P(s_i | s_{i-1})P(o_i | s_{i-1}) \]

\[P(s | o) = \prod_i P(s_i | s_{i-1}, o_{i-1}) \]
MEMM to CRFs

\[P(y_1 \ldots y_n \mid x_1 \ldots x_n) = \prod_j P(y_j \mid y_{j-1}, x_j) = \prod_j \frac{\exp(\sum_i \lambda_i f_i(x_j, y_j, y_{j-1}))}{Z_\lambda(x_j)} \]

\[\exp(\sum_i \lambda_i F_i(x, y)) = \frac{1}{\prod_j Z_\lambda(x_j)}, \text{ where } F_i(x, y) = \sum_j f_i(x_j, y_j, y_{j-1}) \]

New model

\[\exp(\sum_i \lambda_i F_i(x, y)) \]
HMM, MEMM, and CRF in Comparison

Figure 2. Graphical structures of simple HMMs (left), MEMMs (center), and the chain-structured case of CRFs (right) for sequences. An open circle indicates that the variable is not generated by the model.
Conditional Random Field (CRF)
Random Field

Let $G = (Y, E)$ be a graph where each vertex Y_v is a random variable. Suppose $P(Y_v | \text{all other } Y) = P(Y_v | \text{neighbors}(Y_v))$ then Y is a random field.

Example:

- $P(Y_5 | \text{all other } Y) = P(Y_5 | Y_4, Y_6)$
Markov Random Field

• **Random Field:** Let $F = \{F_1, F_2, \ldots, F_M\}$ be a family of random variables defined on the set S, in which each random variable F_i takes a value f_i in a label set L. The family F is called a random field.

• **Markov Random Field:** F is said to be a Markov random field on S with respect to a neighborhood system N if and only if it satisfies the Markov property.

 – undirected graph for joint probability $p(x)$
 – allows no direct probabilistic interpretation
 – define potential functions Ψ on maximal cliques A
 • map joint assignment to non-negative real number
 • requires normalisation

\[
p(x) = \frac{1}{Z} \prod_A \Psi_A(x_A)
\]

\[
Z = \sum_x \prod_A \Psi_A(x_A)
\]
Conditional Random Field: CRF

- Conditional probabilistic sequential models $p(y|x)$
- Undirected graphical models
- Joint probability of an entire label sequence given a particular observation sequence
- Weights of different features at different states can be traded off against each other

$$p(y \mid x) = \frac{1}{Z} \prod_{A} \Psi_{A}(x_{A}, y_{A})$$
$$Z(x) = \sum_{y} \prod_{A} \Psi_{A}(x_{A}, y_{A})$$
Example of CRFs

Suppose $P(Y_v \mid X, \text{all other } Y) = P(Y_v \mid X, \text{neighbors}(Y_v))$
then X with Y is a **conditional** random field

- $P(Y_3 \mid X, \text{all other } Y) = P(Y_3 \mid X, Y_2, Y_4)$
- Think of X as observations and Y as labels
Definition of CRFs

\(\mathbf{X} \) is a random variable over data sequences to be labeled. \(\mathbf{Y} \) is a random variable over corresponding label sequences.

Definition. Let \(G = (V, E) \) be a graph such that \(\mathbf{Y} = (Y_v)_{v \in V} \), so that \(\mathbf{Y} \) is indexed by the vertices of \(G \). Then \((\mathbf{X}, \mathbf{Y}) \) is a conditional random field in case, when conditioned on \(\mathbf{X} \), the random variables \(Y_v \) obey the Markov property with respect to the graph:

\[
p(Y_v | \mathbf{X}, Y_w, w \neq v) = p(Y_v | \mathbf{X}, Y_w, w \sim v),
\]

where \(w \sim v \) means that \(w \) and \(v \) are neighbors in \(G \).
Conditional Random Fields (CRFs)

• CRFs have all the advantages of MEMMs without label bias problem
 – MEMM uses per-state exponential model for the conditional probabilities of next states given the current state
 – CRF has a single exponential model for the joint probability of the entire sequence of labels given the observation sequence
• Undirected acyclic graph
• Allow some transitions “vote” more strongly than others depending on the corresponding observations
Conditional Random Field

Graphical structure of a chain-structured CRFs for sequences. The variables corresponding to unshaded nodes are not generated by the model.

Conditional Random Field: a Markov random field \((Y)\) globally conditioned on another random field \((X)\).
Conditional Random Field

Given an undirected graph $G = (V, E)$ such that $Y = \{Y_v | v \in V\}$, if

$$p(Y_v | X, Y_u, u \neq v, \{u, v\} \in V) \iff p(Y_v | X, Y_u, (u, v) \in E)$$

The probability of Y_v given X and those random variables corresponding to nodes neighboring v in G. Then (X, Y) is a conditional random field.
Conditional Distribution

If the graph $G = (V, E)$ of Y is a tree, the conditional distribution over the label sequence $Y = y$, given $X = x$, by fundamental theorem of random fields is:

$$p_{\theta}(y \mid x) \propto \exp \left(\sum_{e \in E,k} \lambda_k f_k(e, y|_e, x) + \sum_{v \in V,k} \mu_k g_k(v, y|_v, x) \right)$$

x is a data sequence
y is a label sequence
v is a vertex from vertex set $V = \text{set of label random variables}$
e is an edge from edge set E over V
f_k and g_k are given and fixed. g_k is a Boolean vertex feature; f_k is a Boolean edge feature
k is the number of features
$\theta = (\lambda_1, \lambda_2, \cdots, \lambda_n; \mu_1, \mu_2, \cdots, \mu_n); \lambda_k$ and μ_k are parameters to be estimated
$y|_e$ is the set of components of y defined by edge e
$y|_v$ is the set of components of y defined by vertex v
Conditional Distribution (cont’d)

- CRFs use the observation-dependent normalization $Z(x)$ for the conditional distributions:

$$p_\theta(y \mid x) = \frac{1}{Z(x)} \exp \left(\sum_{e \in E, k} \lambda_k f_k(e, y \mid e, x) + \sum_{v \in V, k} \mu_k g_k(v, y \mid v, x) \right)$$

$Z(x)$ is a normalization over the data sequence x.

Conditional Random Fields

- CRFs are based on the idea of Markov Random Fields—modelled as an undirected graph connecting labels with transition functions adding associations between transitions from one label to another.

- State functions help determine the identity of the state.

- Observations in a CRF are not modelled as random variables.
Conditional Random Fields

\[
P(y \mid x) = \frac{\exp \sum (\sum \lambda_i f_i(x, y_t) + \sum \mu_j g_j(x, y_t, y_{t-1}))}{Z(x)}
\]

Hammersley-Clifford Theorem states that a random field is an MRF iff it can be described in the above form.

- The exponential is the sum of the clique potentials of the undirected graph.
- One possible state feature function: \(f(x \text{ is stop}, /t/) \)
 - One possible weight value: \(\lambda = 10 \)
- Transition feature function: \(g(x, /iy/, /k/) \)
 - Indicates \(/k/\) followed by \(/iy/\)
 - One possible weight value: \(\mu = 4 \)

(Strong)
Conditional Random Fields

- Each attribute of the data we are trying to model fits into a *feature function* that associates the attribute and a possible label
 - A positive value if the attribute appears in the data
 - A zero value if the attribute is not in the data
- Each feature function carries a *weight* that gives the strength of that feature function for the proposed label
 - High positive weights indicate a good association between the feature and the proposed label
 - High negative weights indicate a negative association between the feature and the proposed label
 - Weights close to zero indicate the feature has little or no impact on the identity of the label
Formally Definition

- CRF is a Markov random field.
- By the Hammersley-Clifford theorem, the probability of a label can be expressed as a Gibbs distribution, so that

\[
p(y \mid x, \lambda, \mu) = \frac{1}{Z} \exp\left(\sum_{j} \lambda_j F_j(y, x)\right)
\]

\[
F_j(y, x) = \sum_{i=1}^{n} f_j(y_{[c]}^i, x, i)
\]

- What is clique?
- By only taking consideration of the one-node and two-node cliques, we have

\[
p(y \mid x, \lambda, \mu) = \frac{1}{Z} \exp\left(\sum_{j} \lambda_j t_j(y_{[e]}^i, x, i) + \sum_{k} \mu_k s_k(y_{[s]}^i, x, i)\right)
\]
Moreover, let us consider the problem in a first-order chain model, we have

\[
p(y \mid x, \lambda, \mu) = \frac{1}{Z} \exp\left(\sum_j \lambda_j t_j (y_{i-1}, y_i, x, i) + \sum_k \mu_k s_k (y_i, x, i)\right)
\]

For simplifying description, let \(f_j(y, x) \) denote \(t_j(y_{i-1}, y_i, x, i) \) and \(s_k(y_i, x, i) \)

\[
p(y \mid x, \lambda, \mu) = \frac{1}{Z} \exp\left(\sum_j \lambda_j F_j (y, x)\right)
\]

\[
F_j (y, x) = \sum_{i=1}^n f_j (y_{i|c}, x, i)
\]
Labeling

• In labeling, the task is to find the label sequence that has the largest probability

• Then the key is to estimate the parameter lambda

\[\hat{y} = \arg \max_y p_\lambda(y | x) = \arg \max_y (\lambda \cdot F(y, x)) \]

\[p(y | x, \lambda, \mu) = \frac{1}{Z} \exp(\sum_j \lambda_j F_j(y, x)) \]
Optimization

- Defining a loss function that should be convex for avoiding local optimization
- Defining constraints
- Finding a optimization method to solve the loss function
- A formal expression for optimization problem
 \[
 \min_{\theta} f(x) \\
 s.t. \quad g_i(x) \geq 0, 0 \leq i \leq k \\
 \quad h_j(x) = 0, 0 \leq j \leq l
 \]
Loss Function

Empirical loss vs. structural loss

\[
\text{minimize } L = \sum_k |y - f(x, \lambda)|
\]

\[
\text{minimize } L = \|\lambda\| + \sum_k |y - f(x, \lambda)|
\]

Loss function: Log-likelihood

\[
p(y \mid x, \lambda, \mu) = \frac{1}{Z} \exp(\sum_j \lambda_j F_j(y, x))
\]

\[
L(\lambda) = \sum_k \left[-\log Z + \sum_j \lambda_j F_j(y^{(k)}, x^{(k)}) \right]
\]

\[
L_\lambda = \sum_k \left[\lambda \cdot F(y^{(k)}, x^{(k)}) - \log Z(\lambda^{(k)}) \right] - \frac{\|\lambda\|^2}{2\sigma^2} + \text{const}
\]
Parameter Estimation

Log-likelihood

\[L(\lambda) = \sum_k \left[-\log Z + \sum_j \lambda_j F_j(y^{(k)}, x^{(k)}) \right] \]

Differentiating the log-likelihood with respect to parameter \(\lambda_j \)

\[\frac{\delta L}{\delta \lambda_j} = \sum_k \left[F_j(y^{(k)}, x^{(k)}) - \frac{(Z_\lambda(x^{(k)}))'}{Z_\lambda(x^{(k)})} \right] \]

By adding the model penalty, it can be rewritten as

\[\frac{\delta L}{\delta \lambda_j} = \sum_k \left[E_{p(Y|X)}[F_j(Y, X)] - \sum_{k} E_{p(Y|x^{(k)}, \lambda)}[F_j(Y, x^{(k)})] \right] - \lambda \frac{\lambda_j}{\sigma^2} \]

\[Z_\lambda(x^{(k)}) = \sum_y \exp \lambda \cdot F(y, x^{(k)}) \]

\[(Z_\lambda(x^{(k)}))' = \frac{\sum_y \left(\exp(\lambda \cdot F(y, x^{(k)})) \cdot F_j(y, x^{(k)}) \right)}{\sum_y \exp \lambda \cdot F(y, x^{(k)})} \]
Optimization

\[L(\lambda) = \sum_k \left[-\log Z + \sum_j \lambda_j F_j(y^{(k)}, x^{(k)}) \right] \]

\[\frac{\delta L}{\delta \lambda_j} = \mathbb{E}_{p(y, x)} [F_j(Y, X)] - \sum_k \mathbb{E}_{p(y|x^{(k)}, \lambda)} [F_j(Y, x^{(k)})] \]

- \(\mathbb{E}_{p(y, x)} F_j(y, x) \) can be calculated easily
- \(\mathbb{E}_{p(y|x)} F_j(y, x) \) can be calculated by making use of a forward-backward algorithm
- \(Z \) can be estimated in the forward-backward algorithm
Calculating the Expectation

• First we define the transition matrix of y for position x as

$$M_i[y_{i-1}, y_i] = \exp \lambda \cdot f(y_{i-1}, y_i, x, i)$$

$$E_{p_\lambda(y|x^{(k)})} \left[F_j(Y, x^{(k)}) \right] = \sum_y p_\lambda(y | x^{(k)}) F_j(y, x)$$

$$= \sum_{i=1}^{n} \sum_{y_{i-1}, y_i} p(y_{i-1}, y_i | x^{(k)}) f_j(y_{i-1}, y_i, x^{(k)})$$

$$= \sum_i \frac{\alpha_{i-1} (f_i * M_i * V_i) \beta_i^T}{Z_\lambda(x)}$$

$$Z_\lambda(x) = \left[\prod_{i=1}^{n+1} M_i(x) \right] = \alpha_n \cdot 1^T$$

$$p(y_i | x^{(k)}) = \frac{\alpha_{i-1} \beta_i^T}{Z_\lambda(x)}$$

All state features at position i
First-order Numerical Optimization

Using Iterative Scaling (GIS, IIS)

- Initialize each $\lambda_j (= 0$ for example)
- Until convergence
 - Solve $\frac{\delta L}{\delta \lambda_j} = 0$ for each parameter λ_j
 - Update each parameter using $\lambda_j \leftarrow \lambda_j + \Delta \lambda_j$
Second-order Numerical Optimization

Using newton optimization technique for the parameter estimation

\[\lambda^{(k+1)} = \lambda^{(k)} + \left(\frac{\partial^2 L}{\partial \lambda^2} \right)^{-1} \frac{\partial L}{\partial \lambda} \]

Drawbacks: parameter value initialization
And compute the second order (i.e. Hesse matrix), that is difficult

Solutions:
- Conjugate-gradient (CG) (Shewchuk, 1994)
- Limited-memory quasi-Newton (L-BFGS) (Nocedal and Wright, 1999)
- Voted Perceptron (Colloins 2002)
Summary of CRFs

Model
• Lafferty, 2001

Applications
• Efficient training (Wallach, 2003)
• Training via. Gradient Tree Boosting (Dietterich, 2004)
• Bayesian Conditional Random Fields (Qi, 2005)
• Name entity (McCallum, 2003)
• Shallow parsing (Sha, 2003)
• Table extraction (Pinto, 2003)
• Signature extraction (Kristjansson, 2004)
• Accurate Information Extraction from Research Papers (Peng, 2004)
• Object Recognition (Quattoni, 2004)
• Identify Biomedical Named Entities (Tsai, 2005)
• …

Limitation
• Huge computational cost in parameter estimation
HMM vs. CRF

HMM

arg max \(P(\phi \mid S) \)
\[\phi \]
= arg max \(P(\phi)P(S \mid \phi) \)
\[\phi \]
= arg max \(\sum_{y_i \in \phi} \log \left(P_{\text{trans}}(y_i \mid y_{i-1})P_{\text{emit}}(s_i \mid y_i) \right) \)

CRF

arg max \(P(\phi \mid S) \)
\[\phi \]
= arg max \(\frac{1}{Z} e^{\sum \lambda f(c, S)} \)
= arg max \(\sum_{c,i} \lambda_i f_i(c, S) \)

1. Both optimizations are over *sums*—this allows us to use any of the dynamic programming HMM/GHMM decoding algorithms for fast, memory-efficient parsing, with the CRF scoring scheme used in place of the HMM/GHMM scoring scheme.

2. The CRF functions \(f_i(c, S) \) may in fact be implemented using any type of sensor, including such *probabilistic sensors* as Markov chains, interpolated Markov models (IMM’s), decision trees, phylogenetic models, etc..., as well as any *non-probabilistic* sensor, such as n-mer counts or binary indicators.
Appendix
A (discrete-valued) \textit{Markov random field (MRF)} is a 4-tuple $\mathcal{M}=(\alpha, X, P_M, G)$ where:

- α is a finite \textit{alphabet},
- X is a set of (observable or unobservable) \textit{variables} taking values from α,
- P_M is a \textit{probability distribution} on variables in X,
- $G=(X, E)$ is an \textit{undirected} graph on X describing a set of \textit{dependence relations} among variables,

such that $P_M(X_i | \{X_{k \neq i}\}) = P_M(X_i | \mathcal{N}_G(X_i))$, for $\mathcal{N}_G(X_i)$ the neighbors of X_i under G.

\textbf{That is, the conditional probabilities as given by P_M must obey the dependence relations (a generalized “Markov assumption”) given by the undirected graph G.}

A problem arises when actually inducing such a model in practice—namely, that we can’t just set the conditional probabilities $P_M(X_i | \mathcal{N}_G(X_i))$ arbitrarily and expect the joint probability $P_M(X)$ to be well-defined (Besag, 1974).

\textbf{Thus, the problem of estimating parameters locally for each neighborhood is confounded by constraints at the global level...}
The Hammersley–Clifford Theorem

Suppose $P(x)>0$ for all (joint) value assignments x to the variables in X. Then by the Hammersley-Clifford theorem, the likelihood of x under model M is given by:

$$P_M(x) = \frac{1}{Z} e^{Q(x)}$$

for normalization term Z:

$$Z = \sum_{x'} e^{Q(x')}$$

where $Q(x)$ has a unique expansion given by:

$$Q(x_0, x_1, \ldots, x_{n-1}) = \sum_{0 \leq i < n} x_i \Phi_i(x_i) + \sum_{0 \leq i < j < n} x_i x_j \Phi_{i,j}(x_i, x_j) + \ldots$$

...+$x_0 x_1 \ldots x_{n-1} \Phi_{0,1,\ldots,n-1}(x_0, x_1, \ldots, x_{n-1})$

and where any Φ_i term not corresponding to a clique must be zero. (Besag, 1974)

The reason this is useful is that it provides a way to evaluate probabilities (whether joint or conditional) based on the “local” functions Φ.

Thus, we can train an MRF by learning individual Φ functions—one for each clique.
A **Conditional random field (CRF)** is a **Markov random field** of **unobservables** which are globally conditioned on a set of **observables** (Lafferty et al., 2001):

Formally, a CRF is a 6-tuple $M = (L, \alpha, Y, X, \Omega, G)$ where:

- L is a finite **output alphabet** of labels; e.g., \{exon, intron\},
- α is a finite **input alphabet** e.g., \{A, C, G, T\},
- Y is a set of **unobserved variables** taking values from L,
- X is a set of (fixed) **observed variables** taking values from α,
- $\Omega = \{\Phi_c : L^{|Y|} \times \alpha^{|X|} \to \mathbb{R}\}$ is a set of **potential functions**, $\Phi_c(y, x)$,
- $G = (V, E)$ is an **undirected** graph describing a set of **dependence relations** E among variables $V = X \cup Y$, where $E \cap (X \times X) = \emptyset$,

such that $(\alpha, Y, e^{\sum \Phi(c, x) / Z}, G - X)$ is a Markov random field.

Note that:

1. The observables X are **not** included in the MRF part of the CRF, which is only over the subgraph $G - X$. However, the X are deemed **constants**, and are **globally visible** to the Φ functions.

2. We have not specified a probability function P_M, but have instead given “local” **clique-specific** functions Φ_c which together define a coherent probability distribution via Hammersley-Clifford.
A conditional random field is effectively an MRF plus a set of “external” variables X, where the “internal” variables Y of the MRF are the unobservables (⊙), and the “external” variables X are the observables (○):

Thus, we could denote a CRF informally as:

$$C = (M, X)$$

for MRF M and external variables X, with the understanding that the graph $G_{X \cup Y}$ of the CRF is simply the graph G_Y of the underlying MRF M plus the vertices X and any edges connecting these to the elements of G_Y.

Note that in a CRF we do not explicitly model any direct relationships between the observables (i.e., among the X) (Lafferty et al., 2001).