Dynamic Learning Term Project
Fall 2010

Visual Storytelling:
Graphical Models for Dynamic Bayesian Learning from Video Stream Data

September 13, 2010

Ha-Young Jang
E-mail: hyjang@bi.snu.ac.kr

School of Computer Science and Engineering
Seoul National University
Tasks for the Project

• Given
 – A sequence of T image-text pairs of $Y(t) = (V(t), L(t))$, $t=1,\ldots,T$
 – $V(t)$: a vector of visual words, $L(t)$: a vector of linguistic words
 – E.g., from a 20-minute episode of *Friends*

• Construct
 – A dynamic system that learns to estimate the (mental memory) states to generate the future image-text sequences from a historical context of size H:
 \[
 y_{t+1} = f(y_{t-H:t}, u_t; x_t)
 \]

• To demonstrate
 – **Visual storytelling:** Given a sequence of pairs of $(V(h), L(h))$, $h = t$, $t-1$, $t-2$, \ldots, $t-H$, generate $(V(r), L(r))$ for $r = t+1$, $t+2$, $t+3$, \ldots, $t+R$
 – **L2V translation (mental imagery):** Given a series of texts, generate a series of images.
 – **V2L translation (scene description):** Given a series of images, generate a series of texts.
Dynamic Learning Memory

And other creepy crawlies live in Amazon.

But still the emperor penguins remain.

Destroy us powerful enough to tear apart our sun.

Eeromous flocks of parrots and macaws are gathering.

Pre-Processing

and other creepy crawlies live in Amazon.

and other creepy crawlies live in Amazon.

emperor Macaws are gathering.

But still the emperor penguins remain.

destroy us powerful enough to tear apart our sun.

creepy crawlies in Amazon

flocks of parrots

emperor penguins

enough to tear apart our sun

in Amazon

enough to tear

and other

flocks of parrots

emperor penguins

still the
Project: Visual Storytelling

observation

prediction

state

given

control

"Take a look at this"

"I don't know what happened"

generated
Data Sets

• 294 pairs of image and sentence from an episode of ‘Friends’
• For each sentence, there are two screenshots
 – One is 200 by 150 color bitmap image
 – Another is 100 by 75 b/w bitmap image

• Defining the visual words by preprocessing the images is up to you!
• More sets of data (more episodes and different kinds of TV dramas) will be available on request.
Submission Guideline

• Team project
 – Number of teammates: 3

• Schedule
 – First report: Oct. 13, 24:00
 • Project title and abstract (conference paper format)
 • Motivation and questions asked
 • Experimental design
 • Methods
 • Results and discussion
 – Project presentations: Nov. 15-24
 – Final report: Dec. 6, 24:00

• Report format: English in conference paper style (AAAI style)
Tasks

- Main task: Visual storytelling: Given a sequence of pairs of $(V(h), L(h))$, $h = t, t-1, t-2, \ldots, t-H$, generate $(V(r), L(r))$ for $r = t+1, t+2, t+3, \ldots, t+R$
- Plus any additional tasks or variants of the above you want to address!
- In particular, you may use more data sets (video episodes) which will be available on request.
- Using more datasets will allow you to ask other questions, such as what stream of scenes (and dialogues) is coming from which kinds (title or genre) of drama?
- Asking more questions will be a definite plus in grading of the project reports.
Criteria for Project Grading

• Does the project address the essential dynamic learning problems on visual storytelling and their variants?
• How well the experiments are designed? That is, how broad and deep are the questions asked by the experiments?
• How advanced is the algorithm used to solve the problems?
• What innovations or new ideas were put to the existing methods to solve the problems?
• How well does the implemented system work?
• How well is the implemented system described?
• How good the experimental results are described and discussed?
• What are the lessons learned from the project?