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Introduction

VC (Vapnik-Chrvonenkis) theory: SLT

® Conditions for consistency of the ERM inductive
principle

® Bounds on the generalization ability of learning
machines based on these conditions

® Principles for inductive inference from small
samples based on these bounds

® Constructive methods for implementing above
inductive principles
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4.1 Conditions for Consistency

and Convergence of ERM

R(w) :J’Q(z,w)dF(z) or R(w) :IQ(z,w) p(z)dz
Qz,@) = (y- f (x,0))?
Remp (@) = iQ(zi,w)

solution approaches to the learning problem

® estimate unknown c.d.f from data -> find optimal
estimate f (x.a)

® seek an estimate providing minimum of the
(known) empirical risk (ERM)
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Conditions for Consistency
and Convergence of ERM

v Consistency

®* Requirement that estimates provided by ERM

should converge to the true values as the # of
samples grows

Rlw [n) - Rw) whenn - o
Remi(co |N) > R(w,) whenn - o

® We can expect

Remp(cw |N) < R(e |N)

Conditions for Consistency
and Convergence of ERM

Expectad Risk r'|"|:|:|:l-n:|

min R}

Frnpriricad Rigk &gl T}

-
n

FAgurs 4.1 Coresesancy of the ERM.
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Conditions for Consistency
and Convergence of ERM

Nontrivial consistency (Vapnik)

® Consistency should hold for all approximating
functions

® Key Theorem of Learning Theory (Vapnik and
Chervonenkis, 1989)

lim P gsum R(w)-Remp(w)|>sE: 0, Oe>0

n- o

o
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Conditions for Consistency
and Convergence of ERM

® Diversity of a set of functions w.r.t. Zn (dichotomy
case)

® N(Zn) : # of different dichotomies b'Q(z,w)
® H(Zn) = InN(Zn) : random entropy
® H(n) = E(INNZn)) : VC entropy of the set of
indicator functions on a sample of sizéom F(z)

® provides a measure of the expected diversity of a set of

indicator functions with respect to a sample of a given
size

® depends on the set of indicator funcs and on the
(unknown) distribution of samplé¥z)
® G(n)=InmaxN(Zn)
° grovvtﬁ function: distribution-independent

® provides an upper bound for the (distribution-dependent)
entrqy
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Conditions for Consistency
and Convergence of ERM

G(n)<nin2

®* H_.(n) =InE(N(Z,)) : annealed VC entropy
Using Jensen’s inequality

Zai In XiSInEZ a, Xi@

It can be shown that
H(n)<H,,(n)

e H(n)<Han(n)<G(n)<nin2

®* Necessary and sufficient condition for consistency
of the ERM principle Vapnik and Chervonenkis, 1958

lim—~= H(n)
n-o
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Conditions for Consistency
and Convergence of ERM

® asymptotic rate of convergence is callastif for
anyn>n, the following holds

P(R@)-R(w)<&)=e™
(c>0is a positive constant)
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Conditions for Consistency
and Convergence of ERM

® Sufficient condition for fast rate of convergence

Han(N) _

= ( (distribution-dependent condition)

lim

n- o n

® Distribution-independent condition for consistency
of ERM and fast convergence

im S _
n
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4.2 Growth Function and
VC-Dimension

VC-dimension

® Growth function is either linear or bounded by a
logarithmic function of # of samples

® The pointn = h where the growth starts to slow
down is called the VC-dimension.

® If it is finite, the growth function is bounded by
n
G(n)<h(1+In E)

® Finiteness oh provides necessary and sufficient
conditions for the fast rate convergence and for
distribution-independent consistency of ERM.
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VC-Dimension

Biirdaiki+1)
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VC-Dimension

Criterion for demarcation between true and
false (inductive) theories (Popper)

® The necessary condition for the inductive theory to
be true is the feasibility of its falsification, i.e., the
existence of certain assertions (facts) that cannot be
explained by the theory.

® e.g.) VC-dimension is infinite -> false model

® shattering n samples can be separated by a set of
indicator func.s in alp",
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VC-Dimension

® \/C-dimension of a set of indicator functions

® VC-dimensiorh <-> if there exish samples that can be
shattered by this set of functions but het

VC-dimension of the set of real-valued func.

® Indicator function
A<Q(z,w)< B
I1(z,w,B)=1[Q(z,w) - B) >0]
® VC-dimension of real function Q is equal to the
VC-dimension of indicator function.

VC-Dimension

E /"\ @A)
1 i o

Mz, w ]

Figers 4.3 VC-thmerdeon of thie st ol feakvaied Tenoians
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VC-Dimension

VC-dimension for Classification and
regression problems
Classification

Of (X, w) if y=0
Q(z,w) = L
-f(x,w) if y=1
Regression
Q(z,w) = (y-f(x,w)?
h: < h < chr
h = hs
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VC-Dimension

Examples of calculating VC-dimension

® \/C-Dimension of a set of linear indicator func
* h=d4

Q(z,w) =1 (iwiz +Wo > 0)

1 *
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VC-Dimension

® Set of univariate functions with a single parameter
e f(X,w)=1(sinwx>0)

*h=oo

r

1 u” m
e

|| III|H H illl. .|'|i
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VC-Dimension

® Set of rectangular indicator functions
Q(z,c,w) =1if andonlyif |z-ci|cw,i =1,2,...d
*h=2d

Rgars Al W-freadn ol § o of easge i feees
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VC-Dimension

Set of radically symmetric indicator functions

Q(z,c,r) =1if andonlyif || z-¢ ||<r
*h=d+1
Set of real-valued “local” functions

I(x,c,a):KHLC”H
g a 0
I (x,c,a,B) =1 E(BLC”B— BE (d+2 free parameter)
O a 0O

*h=d+1
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VC-Dimension

® | inear combination of fixed basis functions

Qnm(z,w) = iwigi(z)+Wo
*h=m+l )

® Linear combination of adaptive basis functions
nonlinear in parameters

Qm(z,w,V) = i wigi(z, V) + Wo

® can be infinite
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4.3. Bounds on the
Generalization

The upper bounds on the rate of uniform
convergence of the learning processes

® Evaluate the difference between true risk and the
known empirical risk.

® Constructive distribution-independent bounds form
the foundation for a new inductive principle
(structural risk minimization) and associated
constructive procedures.
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Bounds on the Generalization

Classification
® With probability 1 for all Q

R(w) € Rem(w) + E(1+ \/W
2 3

hin(azn/h) +1] - In(n/ 4)
n
® |f the set of loss functions contains a finite number
of elements N

where,e =¢(2, —Inn) —a
h n

£:2InN—Inr/
n
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Bounds on the Generalization

® With 1-2n probability for the func. that minimizes
empirical risk

Rl 1M~ Mine R(w)a/ L (1+1/1+;1

® Confidence level :

® There is a trade- off between the accuracy provided
by the bounds and the degree of confidence
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Bounds on the Generalization

Regression
® For 1-n probability,c depending on the “tail of the
distribution” of the loss functions
Re m
R(w) < M
(1-cA/e)-
® 1 - 2 for that function that minimizes empirical
risk
R [N -minoR@) _ cle
minuRw) *1- e

+O(U/n)
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Bounds on the Generalization

® If nandn are held at particular values, it is
possible to determine the valuelothat leads to
the bound approaching

h[In(a.n/h) +1-In(n/4)
n

eh)y=a >1 with g,=1,9,=1

h .4
—<08 forn=zmin(—=1
n 1 (ﬁ )
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Bounds on the Generalization
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4.4 Structural Risk
Minimization

b o
® |f = is small, other factors must be minimized.

® First term in (4.22) depends on a particular func.
from the set of functions.

® Second term depends mainly on the VC-dimension
of the set of functions.

¢ Structural risk minimization (SRM) provides a
formal mechanism for choosing an optimal model
complexity for a finite sample.
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SRM

® Under SRM the set S of loss functionz@(),
wlQ has sstructure that is, it consists of the
nested subsets, S {Q(z,w),wlQ,} such that
S0S,0..08 0... where kxh, ... < h ...
® Solving a learning problem with finite data
® requires a priori specification of a structure on a set of
approximating functions then
® 1. selecting an element of a structure(having optimal
complexity)
® 2. esitmating the model from the element
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SRM

® 1. Dictionary representation

fm(Xx,wW,V) = ivwg(x,w)

fo0 f20...0 f«..
for example,

fm(X, W) = ivw X
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SRM

® 2. Penalization formulation
S ={f (x,w),
Rpen(w!/\k) =R

with anappropriatly choseriagrangenultiplier A,
such thaf\, > A, > A,...

w|’ <c,} where, <c, <c,...

() +A, HwH2

emp

® 3. Input preprocessing
z =K (x,p)

S, ={f (K(x,B),w),B<c,} wherec, >c,>c,...
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SRM

® 4. Initial conditions for training algorithm
S, ={A:f (x,w),||w°||s c.}
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4.5 Case Study : Comparison of
Methods for Model Selection

® Objective : to choose the model complexity
optimally for a given training sample

® Practical application of either SRM or penalization
requires two tasks :

® Estimation of model parameters (via minimization of the
penalized empirical risk)

® Estimation of the prediction risk
® Two major approaches for estimating prediction
risk :
® Analytic methods
® Resampling or data-driven methods
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Case Study

® Training samples
y =sin?*@nx)+¢e,x 0[01]
® sample size : 10, 20, 30, 100
® noise : defined in terms of SNR as the ratio of the
standard deviation of the true output values for given
input samples over the standard deviation of the gaussian
noise
® Approximating functions
® class of polynomials of degree

® set of functions are linear in parameters : solving linear
least squares
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Case Study

® Model selection
® Choosing an optimal polynomial degmedor a given
training sample
® Comparison set
® Final prediction error (fpe)
® Schwartz criteria (sc)
® Generalized cross-validation (gcv)
® Shibata’'s model selector (sms)
® Leave-one-out cross-validation (cv)
® Vapnik’s measure (vm)

g(p,n)=§—, p—plnp+m—nE
2n
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Case Study

® Comparison strategy
® 1000 times repetition for given small-size training set

¢ Standard box plot notation describing empirical
distribution

® Experimental results

® Vapnik’'s measure for model selection shows superior
overall performance

® Summary of comparison results
® Small size training data may cause no guaranteed

® Vapnik’'s measure guarantees the best worst-case
estimates.

Case Study

CASE STUDY: COMPARISON OF METHODS FOR MODEL SELECTION 123

Analytic model selection criteriz—gev, fpe, sms.
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Case Study

Analytic model selection eriteriz—m, se {gev fiven for reference)
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Agure 4.10 Various analytical model selection penallzation functions: (2} Generalized
cross-validation (gav), final prediction error {fpe), and Shibata's modal selector (smsh. {b)
Vapnik's measure (vmi and Schwartz criteria {sc! for sample sizes indicated. The para- .
meter pr is equal 1o hin.

performance, so that measures like Vapnik’s are required.
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Case Study
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noise level are indicated.
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4.6 Summary

® SLT framework can be used in three ways:

® For the interpretation and critical evaluation of empirical

learning methods developed in statistics and neural
networks.

® For developing new constructive learning procedures
based on SLT.

® For developing new inductive principles, such as
transductive inference and local risk minimization.

® Comments on SLT framework

® SLT sometimes doesn’t seems to conform with real and
complex problems and we cannot expect SLT to provide
immediate and clear solutions to practical problems. With
all these difficulties, all learning methods must be
consistent in SLT senses in order to be a reliable one.




