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Theory
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Introduction

▼ VC (Vapnik-Chrvonenkis) theory: SLT
�Conditions for consistency of the ERM inductive

principle

�Bounds on the generalization ability of learning
machines based on these conditions

�Principles for inductive inference from small
samples based on these bounds

�Constructive methods for implementing above
inductive principles

4.1 Conditions for Consistency
and Convergence of ERM

solution approaches to the learning problem
�estimate unknown c.d.f from data -> find optimal

estimate

�seek an estimate providing minimum of the
(known) empirical risk (ERM)
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Conditions for Consistency
and Convergence of ERM

▼ Consistency
�Requirement that estimates provided by ERM

should converge to the true values as the # of
samples grows

�We can expect
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Conditions for Consistency
and Convergence of ERM

Conditions for Consistency
and Convergence of ERM

▼ Nontrivial consistency (Vapnik)
�Consistency should hold for all approximating

functions

�Key Theorem of Learning Theory (Vapnik and
Chervonenkis, 1989)
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Conditions for Consistency
and Convergence of ERM
�Diversity of a set of functions w.r.t. Zn (dichotomy

case)
�N(Zn) : # of different dichotomies by

�H(Zn) = lnN(Zn)  : random entropy

�H(n) = E(lnN(Zn)) : VC entropy of the set of
indicator functions on a sample of size n from F(z)
�provides a measure of the expected diversity of a set of

indicator functions with respect to a sample of a given
size

�depends on the set of indicator funcs and on the
(unknown) distribution of samples F(z)

�

� growth function: distribution-independent

�provides an upper bound for the (distribution-dependent)
entropy
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Conditions for Consistency
and Convergence of ERM

�Hann(n) = ln E(N(Zn)) : annealed VC entropy 
Using Jensen’s inequality

It can be shown that 

�

� Necessary and sufficient condition for consistency
of the ERM principle (Vapnik and Chervonenkis, 1968)
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Conditions for Consistency
and Convergence of ERM

�asymptotic rate of convergence is called fast if for
any n>n0 the following holds

( c>0 is a positive constant)
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Conditions for Consistency
and Convergence of ERM

�Sufficient condition for fast rate of convergence

   (distribution-dependent condition)

�Distribution-independent condition for consistency
of ERM and fast convergence
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4.2 Growth Function and
VC-Dimension

▼ VC-dimension
�Growth function is either linear or bounded by a

logarithmic function of # of samples n.

�The point n = h where the growth starts to slow
down is called the VC-dimension.

�If it is finite, the growth function is bounded by

�Finiteness of h provides necessary and sufficient
conditions for the fast rate convergence and for
distribution-independent consistency of ERM.

)ln1()(
h

n
hnG +≤



VC-Dimension VC-Dimension

▼ Criterion for demarcation between true and
false (inductive) theories (Popper)
�The necessary condition for the inductive theory to

be true is the feasibility of its falsification, i.e., the
existence of certain assertions (facts) that cannot be
explained by the theory.

�e.g.) VC-dimension is infinite -> false model

�shattering: n samples can be separated by a set of
indicator func.s in all 2n.

VC-Dimension

�VC-dimension of a set of indicator functions
�VC-dimension h <-> if there exist h samples that can be

shattered by this set of functions but not h+1

▼ VC-dimension of the set of real-valued func.
�Indicator function

�VC-dimension of real function Q is equal to the
VC-dimension of indicator function.
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VC-Dimension

▼ VC-dimension for Classification and
regression problems

Classification

Regression
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VC-Dimension

▼ Examples of calculating VC-dimension
�VC-Dimension of a set of linear indicator func
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VC-Dimension

�Set of univariate functions with a single parameter
�
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VC-Dimension

�Set of rectangular indicator functions

�h = 2d
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VC-Dimension

▼ Set of radically symmetric indicator functions

�h = d+1

▼ Set of real-valued “local” functions

               (d+2 free parameter)

�h = d+1
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VC-Dimension

�Linear combination of fixed basis functions

�h = m+1

�Linear combination of adaptive basis functions
nonlinear in parameters

�can be infinite
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4.3. Bounds on the
Generalization

▼ The upper bounds on the rate of uniform
convergence of the learning processes
�Evaluate the difference between true risk and the

known empirical risk.

�Constructive distribution-independent bounds form
the foundation for a new inductive principle
(structural risk minimization) and associated
constructive procedures.

Bounds on the Generalization

▼ Classification
�With probability 1-η for all Q

�If the set of loss functions contains a finite number
of elements N
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Bounds on the Generalization

�With 1-2η probability for the func. that minimizes
empirical risk

�Confidence level : 1- η
�There is a trade-off between the accuracy provided

by the bounds and the degree of confidence
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Bounds on the Generalization

▼ Regression
�For 1- η probability, c depending on the “tail of the

distribution” of the loss functions

�1 - 2η for that function that minimizes empirical
risk
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Bounds on the Generalization

�If n and η are held at particular values, it is
possible to determine the value of h that leads to
the bound approaching
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4.4 Structural Risk
Minimization

�If       is small, other factors must be minimized.

�First term in (4.22) depends on a particular func.
from the set of functions.

�Second term depends mainly on the VC-dimension
of the set of functions.

�Structural risk minimization (SRM) provides a
formal mechanism for choosing an optimal model
complexity for a finite sample.
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�Under SRM the set S of loss functions Q(z,w),
w∈Ω has a structure, that is, it consists of the
nested subsets Sk = {Q(z,w),w∈Ωk} such that
S1⊂S2 ⊂ ... ⊂Sk ⊂ ... where h1<h2 ... < hk ...

�Solving a learning problem with finite data
�requires a priori specification of a structure on a set of

approximating functions then

�1. selecting an element of a structure(having optimal
complexity)

�2. esitmating the model from the element

SRM

�1. Dictionary representation
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SRM

�2. Penalization formulation

�3. Input preprocessing

... where     }),,({ 321

2
ccccfS kk <<≤= wwx

...such that 

 multiplier Lagrangechosen ely appropriatan with 

 w)(),(

...   where}ww),(x,{

321

2

321

2

λλλ
λ

λωλω

>>

+=

<<≤=

k

kempkpen

kk

RR

ccccfS

... where    }),),,(({

),(

321 ccccKfS

xKz

kk >>≤=
=

ββ
β

wx

SRM

�4. Initial conditions for training algorithm
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4.5 Case Study : Comparison of
Methods for Model Selection

�Objective : to choose the model complexity
optimally for a given training sample

�Practical application of either SRM or penalization
requires two tasks :
�Estimation of model parameters (via minimization of the

penalized empirical risk)

�Estimation of the prediction risk

�Two major approaches for estimating prediction
risk :
�Analytic methods

�Resampling or data-driven methods

Case Study

�Training samples

�sample size : 10, 20, 30, 100

�noise : defined in terms of SNR as the ratio of the
standard deviation of the true output values for given
input samples over the standard deviation of the gaussian
noise

�Approximating functions
�class of polynomials of degree m

�set of functions are linear in parameters : solving linear
least squares
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Case Study

�Model selection
�Choosing an optimal polynomial degree m for a given

training sample

�Comparison set
�Final prediction error (fpe)

�Schwartz criteria (sc)

�Generalized cross-validation (gcv)

�Shibata’s model selector (sms)

�Leave-one-out cross-validation (cv)

�Vapnik’s measure (vm)
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Case Study

�Comparison strategy
�1000 times repetition for given small-size training set

�Standard box plot notation describing empirical
distribution

�Experimental results
�Vapnik’s measure for model selection shows superior

overall performance

�Summary of comparison results
�Small size training data may cause no guaranteed

performance, so that measures like Vapnik’s are required.

�Vapnik’s measure guarantees the best worst-case
estimates.

Case Study Case Study



Case Study Case Study

Case Study Case Study



Case Study Case Study

4.6 Summary

�SLT framework can be used in three ways:
�For the interpretation and critical evaluation of empirical

learning methods developed in statistics and neural
networks.

�For developing new constructive learning procedures
based on SLT.

�For developing new inductive principles, such as
transductive inference and local risk minimization.

�Comments on SLT framework
�SLT sometimes doesn’t seems to conform with real and

complex problems and we cannot expect SLT to provide
immediate and clear solutions to practical problems. With
all these difficulties, all learning methods must be
consistent in SLT senses in order to be a reliable one.


