Statistical Learning Theory: Data Mining Workshop (SCAI99S)

1999³â 1Çбâ


³í¹®¼±ÅÃ: ¾Æ·¡ÀÇ ³»¿ëÁß °¢ÀÚ ¹ßÇ¥ÇÒ ºÎºÐÀ» °áÁ¤ÇÑ ÈÄ, ÀÌÁ¾¿ì Á¶±³ ¿¡°Ô ³í¹® ¹øÈ£¸¦ ¾Ë·Á ÁÖ¼¼¿ä.
¹ßÇ¥ÀÚ Á¦¸ñ ÆäÀÌÁö ¹ßÇ¥ÀÚ·á ¹ßÇ¥ÀÏ
±è»ó¼ö Chap. 1: Introduction to Data Mining p.3 ~ 22 ppt 3.19
¹ÚÂùÁø Chap. 2: Introduction to Neural Networks p.23 ~ 42 ppt 3.19
¼®È£½Ä Chap. 3: Data Preparation p.43 ~ 60 ppt 3.19
°û³ëÁØ Chap. 4: Neural Network Models and Architectures p.61 ~ 80 ppt 3.19
ÀÌ»óÁø Chap. 5: Training and Testing Neural Networks p.81 ~ 98 ppt 3.19
¿ÀÀå¹Î Chap. 6: Analyzing Neural Networks for Decision Support p.99 ~ 108 ppt 3.19
À̺´Á¤ Chap. 7: Deploying Neural Network Applications p.109 ~ 114 ppt 3.26
Á¤¼Ò¿µ Chap. 8: Intelligent Agents and Automated Data Mining p.115 ~ 128 ppt 3.26
±èÀοµ Chap. 9: Market Segmentation p.131 ~ 142 ppt 3.26
¼ÛÀç¼ø Chap. 10: Real Estate Pricing Model p.143 ~ 154 ppt 3.26
¾öÀçÈ« Chap. 11: Customer Ranking Model p.155 ~ 166 ppt 3.26
À̽ÃÀº Chap. 12: Sales Forecasting p.167 ~ 178 ppt 3.26


¹ßÇ¥ÀÚ Á¦¸ñ ÆäÀÌÁö ¹ßÇ¥ÀÚ·á ¹ßÇ¥ÀÏ
ÇÑ»óÀ± Chap. 1: What is Data Mining? p.1 ~ 24 ppt 5.14
½ÅÇüÁÖ Chap. 2: Statistical Evaluation for Big Data p.25 ~ 50 ppt 5.14
¼­¿µ¿ì Chap. 3: Preparing the Data p.51 ~ 80 ppt 5.14
¼Û»ó¿Á Chap. 4: Data Reduction p.81 ~ 118 ppt 5.21
±è ¼± Chap. 5: Looking for Solutions p.119 ~ 152 ppt 5.21
Ȳ±Ô¹é Chap. 6: What's Best for Data Reduction and Mining? p.153 ~ 188 ppt 5.21


ÀΰøÁö´É¿¬±¸½Ç 451È£·Î ¿Í¼­ ¹ßÇ¥ÀÚ·á ã¾Æ°¡½Ã±â ¹Ù¶ø´Ï´Ù.

¹ßÇ¥ÀÚ Á¦¸ñ ÆäÀÌÁö ¹ßÇ¥ÀÚ·á ¹ßÇ¥ÀÏ
 
Chap. 1: A Review of Machine Learning Methods p. 3 ~ 70 ppt
 
Á¤½ÅÈ£ Chap. 2: Data Mining and Knowledge Discovery : A Review of Issues and a Multistrategy Approach p. 71 ~ 112 ppt
 
±èÁÖ°ü Chap. 3: Fielded Application of Machine Learning p. 113 ~ 130 ppt
 
·ùÁ¤¿ì Chap. 4: Application of Inductive Logic Programming p. 131 ~ 144 ppt
 
 
Chap. 5: Application of Machine Learning in Finite Element Computation p. 147 ~ 172 ppt
 
½Å¼ö¿ë Chap. 6: Application of Inductive Learning and Case-Based Reasoning for Troubleshooting Industrial Machines p. 173 ~ 184 ppt
 
 
Chap. 7: Empirical Assembly Sequence Plannig : A Multistrategy Constructive Learning Approach p. 185 ~ 202 ppt
 
Çã¿øÃ¢ Chap. 8: Inductive Learning in Design : A Method and Case Study Concerning Design of Antifriction Bearing Systems p. 203 ~ 220 ppt
 
±èÀ¯È¯ Chap. 9: Finding Associations in Collections of Text p. 223 ~ 240 ppt
 
ÀÌÀ翵 Chap. 10: Learning Patterns in Images p. 241 ~ 268 ppt
 
ÀÌÀκ¹ Chap. 11: Applications of Machine Learning to Music Research : Empirical Investigations into the Phenomenon of Musical Expression p. 269 ~ 294 ppt
 
±èÁ¤Áý Chap. 12: WebWatcher : A Learning Apprentice for the World Wide Web p. 297 ~ 312 ppt
 
¹Ú»ó¿í Chap. 13: Biologically Inspired Defences Against Computer Viruses p. 313 ~ 334 ppt
 
¼Ûâºó Chap. 14: Behavioural Cloning of Control Skil p. 335 ~ 352 ppt
 
±Ç¿ë½Ä Chap. 15: Acquiring First-order Knowledge About Air Traffic Control p. 353 ~ 386 ppt
 
±è¼®ÁØ Chap. 16: Application of Machine Learning to Medical Diagnosis p. 389 ~ 408 ppt
 
Çϼ±¿µ Chap. 17: Learning to Classify Biomedical Signals p. 409 ~ 428 ppt
 
Á¶µ¿¿¬ Chap. 18: Machine Learning Applications in Biological Classifications of River Water Quality p. 429 ~ 448 ppt