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Abstract: High-throughput genomic analysis provides insight into a complicated 
biological phenomena. However, the vast amount of data produced from up-
to-date biological experimental processes needs appropriate data mining 
techniques to extract useful information. In this paper, we propose a method 
based on cluster analysis and Bayesian network learning for the molecular 
pharmacology of cancer. Specifically, the NCI60 dataset is analysed by soft 
topographic vector quantization (STVQ) for cluster analysis and by Bayesian 
network learning for dependency analysis. Our results of the cluster analysis 
show that gene expression profiles are more related to the kind of cancer than 
to drug activity patterns. Dependency analysis using Bayesian networks 
reveals some biologically meaningful relationships among gene expression 
levels, drug activities, and cancer types, suggesting the usefulness of Bayesian 
network learning as a method for exploratory analysis of high-throughput 
genomic data. 
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1. INTRODUCTION 

Recent developments in the technology for biological experiments have 
made it possible to produce massive biological datasets. For example, 
microarrays obtained from cDNA chips or oligonucleotide chips provide a 
parallel view of the expression pattern of tens of thousands of genes in a 



2 Methods of Microarray Data Analysis II
 

 

sample. These massive datasets provide an opportunity to broaden the 
knowledge of the complex biological phenomena, but also require 
appropriate analysis techniques different from conventional methods for the 
traditional one-gene-in-one-experiment paradigm. Until now, diverse 
methods from the statistics and machine learning fields, such as hierarchical 
clustering [Eisen et al., 1998], principal component analysis (PCA) 
[Raychaudhuri et al., 2000], neural networks [Khan et al., 2001], and 
Bayesian networks [Friedman et al., 2000; Hartemink et al., 2001; Hwang et 
al., 2001], have been applied to high-throughput genomic analysis. In data 
analysis, it is most important to adopt the appropriate methods to the purpose 
of the analysis. 

In this paper, the NCI60 dataset [Scherf et al., 2000] is analysed for the 
molecular pharmacology of cancer. The NCI60 dataset consists of 60 human 
cancer cell lines from 9 kinds of cancers, which are colorectal, renal, ovarian, 
breast, prostate, lung, and central nervous system origin cancers, as well as 
leukaemias and melanomas. On each cell line, the gene expression pattern is 
measured by a cDNA microarray of 9,703 genes including ESTs. Also, 40 
molecular targets other than mRNA are assessed. And 1,400 chemical 
compounds are tested on the 60 cell lines. These compounds include some 
anticancer drugs that are currently in clinical use. The drug activity on the 
cell line is measured by the growth inhibition assessed from changes in total 
cellular protein after 48 hours of drug treatment using sulphorhodamine B 
assay [Scherf et al., 2000]. 

We use soft topographic vector quantization (STVQ) [Graepel, 1998] for 
cluster analysis and Bayesian network learning for dependency analysis. In 
the cluster analysis, 60 cell lines are clustered based on the gene expression 
patterns and drug activity patterns. Dependency analysis aims to model the 
probabilistic relationships among the expression level of each gene, the 
activity of each drug, and the kind of cancer. 

The paper is organized as follows. In Section 2, the cluster analysis by 
STVQ is described. The dependency analysis by Bayesian network learning 
is described in Section 3. Finally, the conclusion and some directions for 
further research are given in Section 4. 

2. CLUSTER ANALYSIS OF THE NCI60 DATASET 

We have clustered the 60 human cancer cell lines of the NCI60 dataset based 
on gene expression patterns and drug activity patterns, respectively. In the 
experiments, we investigate if there is a common pattern in gene expression 
and drug activities of the cell lines from the same tissue of origin, and thus if 
cell lines of the same cancer type can be clustered appropriately. 
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2.1 Soft Topographic Vector Quantization 

Soft topographic vector quantization (STVQ) [Graepel, 1998] is a clustering 
algorithm based on principles from statistical physics. It can provide not 
only a stable and good clustering solution, but also a topographic map of the 
clustered data. 

In this algorithm, clustering is defined in terms of an optimisation 
problem. The cost function to be optimised is given as 
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where N is the number of samples and M is the number of clusters. mij is a 
binary variable indicating whether the ith sample belongs to the jth cluster, 
and eij is the error occurred by assigning the ith sample to the jth cluster. The 
error term is defined as 
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where xi is a sample vector and zk is a cluster centre whose value is 
determined by the average of the sample vectors assigned to it. hjk is a 
neighbourhood function between jth and kth clusters,. By introducing hjk for 
every pair of clusters, STVQ is able to visualize the cluster structure in the 
same way as the self-organizing map (SOM) does in the one- or two-
dimensional space. 

STVQ provides an efficient procedure to find a good solution to the 
minimization of Equation 1 based on the maximum entropy principle and the 
idea of deterministic annealing. It is initialised with a random configuration 
as a K-means algorithm and proceeds using an iterative optimisation method, 
the EM algorithm [Dempster et al., 1977], with some annealing schedule. In 
the E-step, the expectation value of mij, that is the probability that the sample 
xi belongs to the jth cluster, is estimated for each pair of samples and clusters. 
Then, all the cluster centres are calculated in the M-step. These two steps are 
iteratively alternated until convergence. More details about STVQ can be 
found in [Graepel, 1998]. 

2.2 Clustering of the NCI60 Cell Lines Using STVQ  

The NCI60 dataset comprises two matrices, called the T matrix and the A 
matrix. In the T matrix, each cell line is represented by 1,416 attributes that 
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include 1,376 genes and 40 molecular characteristics. The 1,376 genes are 
those with strong patterns of variation among the cell lines and with less than 
or equal to 4 missing values [Scherf et al., 2000]. Each cell line in the A 
matrix is represented by the activity values of 1,400 chemical compounds. 

For each cell line in the T matrix, all of its attribute values were 
standardized (mean value is 0 and the standard deviation is 1) across 1,416 
attributes, including genes and individual targets. Likewise, all the drug 
activity values of each cell line in the A matrix were standardized. Now, 
each cell line is represented as a vector, where the vector xi corresponds to 
the ith cell line. 

First, we have clustered the 60 cell lines based on the gene expression 
profiles. For each cluster centre zk, all of its attribute values are standardized 
after every update. Then the squared Euclidean distance in Equation 2 is 
closely related with the Pearson correlation coefficient. That is, 
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where D is the number of attributes of xi and zk, and rik is the Pearson 
correlation coefficient for xi and zk. Based on this relation, we have used the 
squared Euclidean distance scaled by 1/D as the distance between xi and zk, 
and the error term in Equation 2 is equivalent to 
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The cell lines have been clustered with varying number of clusters, that is 
9, 16, and 25. The result with 16 clusters is shown in Figure 1(a). It can be 
seen that each cluster or nearby clusters appropriately reflect the organ of 
origin of its constituent, especially for the leukaemias (LE), the colon cancer 
lines (CO), the CNS lines, the renal carcinoma lines (RE), and the melanoma 
lines (ME). 
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Figure 1. The results of cell line clustering: (a) based on gene expression profiles (α = 0.0), 
(b) based on interpolated distance (α = 0.7), and (c) based on drug activity patterns (α = 1.0). 
The value of hjk is inversely proportional to the Euclidean distance between jth and kth clusters, 
where each cluster is represented as a discrete position in the two-dimensional lattice. In this 
4×4 lattice, the cluster in the upper-left corner is encoded as (0, 0) and that in the lower-right 
corner as (3, 3). Clusters at the corners and ends are not neighbouring each other in view of 
Euclidean distance between the coordinates in the lattice. 

We then ask, will the cell lines from the same tissue of origin show 
similar patterns in drug activities, such that they appear in the same or 
nearby clusters? To investigate if this is the case, we have clustered the cell 
lines based on both gene expression profiles and drug activity patterns. The 
error occurred by assigning a cell line to a particular cluster is defined as 
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where the cell line xi
g and the cluster zk

g are related with gene expression 
profiles, and xi

d and zk
d with the drug activity patterns. The constant α is 

used to interpolate two distances based on the gene expression profiles and 
drug activity patterns. 

Two criteria were used to measure the quality of the clustering results: 
the average Pearson correlation coefficient R and the average entropy H 
across all the clusters. They are defined as 
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where N is the number of cell lines, M is the number of clusters, and C is the 
number of tissues of origin. Nj represents the number of cell lines assigned to 
the jth cluster, and Njk the number of cell lines from the kth organ of origin in 
the jth cluster. The value in the bracket in Equation 6 is the average Pearson 
correlation coefficient across all the pairs of cell lines in the same cluster and 
that in Equation 7 represents the entropy in a cluster. When the cluster size is 
fixed, the higher value of entropy H means that the cluster structure is less 
reflective of the tissue of origin of the cell lines. In the case of the Pearson 
correlation coefficient R, the higher value means a better quality of 
clustering result in terms of inner cluster similarity. 

Figure 2 shows the variation of the values of R and H in clustering of the 
cell lines, respectively, with varying α values in Equation 5. It can be seen 
that, with the higher value of α, the value of R based on gene expression 
profiles gets lower and the value based on drug activity patterns gets higher, 
showing the opposite trends between the two cases. In the case of the 
average entropy, as the value of α increases, the entropy has a tendency of 
being higher (for 16 clusters, from 0.40 to 0.72), and thus the quality of 
clustering becomes worse. 

 

Figure 2. Values of the two measures of clustering quality over varying α. (a) Averaged 
Pearson correlation coefficients for 9 and 16 clusters. GE: The Pearson correlation coefficient 
based on gene expression profiles. DA: The coefficient based on drug activity patterns. (b) 
Averaged clustering entropies for 9 and 16 clusters. Only cancer types of the constituents in a 
cluster are considered, so just one graph suffices for each experiment. 

From these two results, we can see that, in general, the similarity in gene 
expression profiles among a set of cell lines does not necessarily relate to a 
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similarity in drug activity patterns among the cell lines. Also, the drug 
activity patterns are less related to the organ of origin, when compared with 
the gene expression profiles. 

The cluster structure of the 60 cell lines on the basis of drug activity 
patterns only, that is α = 1.0 in Equation 5, is shown in Figure 1(c). As also 
indicated by the value of average entropy, the cluster structure of the cell 
lines can be seen to be more heterogeneous than the result based on the gene 
expression profiles only. And Figure 1(b) shows a compromised solution 
with α = 0.7. In [Scherf et al., 2000], it has been proposed that this 
heterogeneity might be partly due to the activity of genes related to drug 
sensitivity and resistance, which has been supported by the fact that several 
cell lines with a relatively high expression level of multi-drug resistance 
gene ABCB1 have been clustered in the same group. Inspired by our 
clustering results and the proposal, we have tried analysing the relationships 
among the activities of anticancer drugs and the expression levels of the 
genes by Bayesian network learning. 

3. DEPENDENCY ANALYSIS USING BAYESIAN 
NETWORK LEARNING 

3.1 Bayesian Networks 

A Bayesian network [Heckerman, 1999] is a probabilistic graphical model 
that represents the joint probability distribution over a number of random 
variables. For an efficient representation, conditional independencies among 
the variables are exploited. These conditional independencies are encoded by 
a DAG (directed acyclic graph) structure in which a node corresponds to a 
random variable. The joint probability distribution over a set of n random 
variables X = {X1, X2, …, Xn}, given the Bayesian network for X, is 
described as follows: 
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where Pa(Xi) is the set of parents of node Xi in the Bayesian network 
structure. P(Xi | Pa(Xi)) in the above equation is called the local probability 
distribution for Xi. Typically, the linear Gaussian model for continuous 
variables and the multinomial model for discrete variables are used for 
modeling the local probability distribution. 
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Learning Bayesian networks from data consists of two parts: learning the 
network structure and learning the local probability distribution for each 
node in the given structure. The second part corresponds to a simple 
calculation under some reasonable assumptions [Heckerman, 1999]. A 
popular approach to structural learning is the score-based search. The search 
space is nevertheless super-exponential in the number of variables. Because 
it is nearly impossible to find the best-scoring network structure even in a 
moderate case (7 or 8 variables), several search heuristics such as greedy 
search, greedy search with random restarts, and simulated annealing are used 
in practice [Heckerman, 1999]. In this paper, the greedy search algorithm 
and another search heuristic for hundreds of variables with the BD (Bayesian 
Dirichlet) scoring metric [Heckerman et al., 1995] are used to learn Bayesian 
networks from the NCI60 dataset. 

3.2 Applying Bayesian Networks to the Analysis of 
NCI60 Dataset 

The NCI60 dataset contains gene expression patterns (T matrix) and drug 
activity patterns (A matrix) for 9 different cancer types [Scherf et al., 2000]. 
To model the probabilistic relationships among them, we use a Bayesian 
network where each node corresponds to each variable. In the Bayesian 
network learning, the T matrix and A matrix are combined together, so that 
each cell line sample has gene expression levels and drug activities as its 
attributes. 

3.2.1 Pre-Processing of the Dataset 

The experiments focus on the 1,376 genes and 118 drugs as in the analysis of 
gene-drug correlations by Scherf et al. [2000]. Furthermore, genes and drugs 
that have more than 3 missing values across 60 samples, as well as unknown 
ESTs, were eliminated for robust analysis. Consequently, the analysed 
NCI60 dataset includes 60 samples with 890 attributes (805 gene expression 
levels, 84 drug activities, and one additional variable for the kind of cancer). 

The number of attributes is extremely large compared to the number of 
samples. This might cause problems, such as a seriously slow learning speed, 
low confidence in learned models, and infeasibility of probabilistic inference. 
To cope with these problems, the number of attributes is reduced in two 
ways. One is to use prototypes of attributes. Genes and drugs are clustered 
respectively and the centre of each cluster is regarded as an attribute. The 
other is attribute selection. Here, all the genes and drugs are clustered 
together and all the members of some adjacent clusters are selected to 
construct the Bayesian network for the specific purpose of the analysis. The 
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soft topographic vector quantization (STVQ) described in Section 2 is used 
for clustering. 

All the continuous attribute values were discretized into three levels (low, 
normal, and high) for the multinomial local probability distribution model of 
the Bayesian network. The multinomial model is chosen because of its 
expressive power although discretization might cause some information loss. 
Two discretization boundary values for each attribute are calculated as µ + 
c⋅σ and µ - c⋅σ. Here, µ is the mean value and σ is the standard deviation of 
the attribute across 60 samples. c is a constant which determines the 
distribution ratio of the original values in low, normal, and high. 

3.2.2 A Fast Search Heuristic for Bayesian Network Learning 

A general greedy search algorithm [Heckerman, 1999] is nearly inapplicable 
to learning Bayesian networks which consist of hundreds of nodes. Friedman 
et al. [1999] suggest a fast search heuristic for such cases and a similar 
approach is adopted in the experiments. The “local to global” heuristic is a 
kind of greedy search algorithm. Here, the search space is reduced by 
learning the structure around each node within small bounds before 
performing the greedy search procedure. The bounds are based on the 
concept of a Markov blanket [Pearl, 1988]. The Markov blanket of a variable 
satisfies the following. 

,)(        )),(|()|( iiiiii XXXXPXXP −⊆=− XBLBLX  [9] 

where X is the set of all the variables and BL(Xi) is the Markov blanket of Xi. 
Because the Markov blanket size of each node is unknown, the maximum 
size is pre-specified. Although the “local to global” heuristic is not 
guaranteed to find a good-scoring network in all cases, the learning speed is 
much faster than a general greedy search algorithm in the case of learning 
Bayesian networks with hundreds of nodes. 

3.3 Experimental Results 

Experimental results on the original dataset (Dataset 1), one reduced 
dataset with prototypes (Dataset 2), and another reduced dataset with 
selected attributes (Dataset 3) are given here. Table 1 shows the properties of 
these three datasets with applied learning methods, learning time, and the 
applicability of probabilistic inference. This table describes the properties of 
three datasets with respect to the applied learning methods, learning time, 
and the applicability of probabilistic inference. Samples in Dataset 2 have 
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gene prototypes and drug prototypes as attributes. Dataset 1 is too large to 
apply the general greedy search algorithm. Dataset 3 is so small that the 
“local to global” heuristics are not required. Microsoft MSBN software - 
http://research.microsoft.com/research/dtg/msbn/OldMSBN.htm - was used 
for probabilistic inference in the analysis.  The average learning time is 
measured on a Pentium III 1GHz machine. 

Table 1. The properties of three datasets with respect to the applied learning methods, 
learning time, and the applicability of probabilistic inference. The numbers in the 
parentheses of the forth column represent the number of runs of the greedy search 
algorithm with random initialisations. The numbers in the parentheses of the fifth column 
represent the used maximum Markov blanket sizes. The rightmost column shows the 
applicability of probabilistic inference to the Bayesian networks learned from each dataset.  

 
 # of 

genes 
# of 

drugs 
Greedy 
search 

“Local to global” 
heuristics 

Learning time 
in avg. (secs)

Prob. 
inference

Dataset 1 805 84 “” Ο (5 ~ 8)  3233.7 no 
Dataset 2 40 5 Ο (20) Ο (5 ~ 15) 123.9 yes 
Dataset 3 12 4 Ο (100) “” 15.6 yes 

 

3.3.1 Experimental Results on the Original Dataset 

Three Bayesian networks were learned from the original dataset according to 
three different discretization boundaries (c = 0.43, 0.50, and 0.60). 
Probabilistic inference from the Bayesian network with 890 nodes is nearly 
impossible. Hence, only the number of edges connected to each node is 
analysed here. An edge represents direct probabilistic dependency and the 
node with many edges is considered to be related to many other nodes. Table 
2 lists the top ten nodes that are most related to others on average in three 
Bayesian networks. The most related one is the cancer type node. The other 
nine nodes are all for genes. The results seem to be reasonable since the 
strong relationship between gene expression patterns and the kind of cancer 
is discovered from the cluster analysis in Section 2. 

To investigate the influence of different discretization boundaries on the 
analysis, the Pearson correlation coefficient (rij) among the numbers of edges 
of all the nodes in two Bayesian networks was calculated as follows: 
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where nki is the number of edges of node k in Bayesian network i and nkj is 
the number of edges of the same node in Bayesian network j. The average 
value of rij among three Bayesian networks is 0.841. The number of edges of 
each node does not seem to be so much influenced by different discretization 
boundary values. 

Table 2. Top ten nodes that are closely related to the others. The first is cancer type and the 
other nine nodes are all for genes. The average number of edges of each node over all 890 
nodes is 5.21. 
 

Description of node The average 
number of edges

The kind of cancer 125 
SID W 487878, SPARC/osteonectin [5':AA046533, 3':AA045463] 25 
Homo sapiens Cyr61 mRNA, complete cds Chr.1 [486700, (DIW), 
5':AA044451, 3':AA044574] 18.3 

SID W 162479, Homo sapiens epithelial-specific transcription factor 
ESE-1b (ESE-1) mRNA, complete cds [5':H27938, 3':H27939] 16 

CDH2 Cadherin 2, N-cadherin (neuronal) Chr. [325182, (DIRW), 
5':W48793, 3':W49619] 13.7 

H.sapiens mitogen inducible gene mig-2, complete CDS Chr.14 
[488643, (IW), 5':AA045936, 3':AA045821] 13.3 

SID W 429623, Homo sapiens clone 24659 mRNA sequence 
[5':AA011634, 3':AA011635] 13.3 

SID W 290871, Integrin alpha-3 subunit [5':N99380, 3':N71998] 13 
COL4A1 Collagen, type IV, alpha 1 Chr.13 [145292, (EW), 
5':R78225, 3':R78226] 12.7 

COL4A1 Collagen, type IV, alpha 1 Chr.13 [489467, (IEW), 
5':AA054624, 3':AA054564] 12.7 

 

3.3.2 Experimental Results on the Reduced Dataset with Prototypes 

In the Bayesian network learned from the reduced dataset with 40 gene 
prototypes and 5 drug prototypes, the negative correlation between ASNS 
(Asparagine synthetase Chr.7 [510206, (IW), 5':AA053213, 3':AA053461]) 
and L-asparaginase, as well as the negative correlation between DPYD (SID 
W 278125, Dihydropyrimidine dehydrogenase [5':N94809, 3':N63511]) and 
5FU (fluorouracil) are examined [Scherf et al., 2000]. Figure 3 shows two 
parts of the Bayesian network. In Figure 3(a), G4 is the gene prototype 
which includes ASNS and D2 is the drug prototype which includes L-
asparaginase. G4 and D2 are dependent on each other directly. This suggests 
that these two nodes are strongly correlated with each other. In Figure 3(b), 
G8 is the gene prototype that includes DPYD and D5 is the drug prototype 
that includes 5FU. G8 and D5 do not directly depend on each other. 
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Figure 3. Two parts of the Bayesian network with 46 nodes. G1 ~ G40 are gene prototypes. 
D1 ~ D5 correspond to drug prototypes. In (a), D2 directly depends on G4 and vice versa. D5 
is not directly dependent on G8 in (b). 

Table 3 presents the results of the probabilistic inference from the 
Bayesian network. The inferred conditional probabilities do not show the 
expected negative correlation between D2 and G4 clearly. For example, 
P(D2 = low | G4 = high) should be greater than P(D2 = high | G4 = high). As 
a consequence, the Bayesian network with 46 nodes has failed to reveal 
some biologically known facts clearly. It might be due to the information 
loss induced from discretization, the use of prototypes, or both of these. 

Table 3. The conditional probability table for P(D2 | G4) inferred from the Bayesian network 
in Figure 3. The negative correlation is not apparent here. 
 

 D2 = low D2 = normal D2 = high
G4 = low 0.32096 0.27086 0.40818 
G4 = normal 0.31387 0.41247 0.27366 
G4 = high 0.32167 0.34920 0.32913 

 

3.3.3 Experimental Results on the Reduced Dataset with Selected 
Attributes 

To investigate the probabilistic relationships around L-asparaginase, 12 
genes and 4 drugs were selected through clustering. Figure 4 shows the part 
of the Bayesian network with 17 nodes. In this figure, the direct probabilistic 
dependency is observed between the cancer type and L-asparaginase. L-
asparaginase and ASNS are also dependent on each other directly. In addition, 
ASNS directly depends on P5CR (SID W 484773, PYRROLINE-5-
CARBOXYLATE REDUCTASE [5':AA037688, 3':AA037689]). Tables 4 
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and 5 show the results of some probabilistic inferences from the Bayesian 
network. The conditional probabilities in Table 4 coincide with the negative 
correlation between ASNS and L-asparaginase. Moreover, when the cancer 
type is known to be leukaemia, the negative correlation is stronger. 

 

Figure 4. The Bayesian network with 17 nodes. Gene nodes are represented by acronyms. 
Following is the list of full names of the acronyms P5CR, ASNS, H2B, HH, and LL: SID W 
484773, PYRROLINE-5-CARBOXYLATE REDUCTASE [5':AA037688, 3':AA037689] 
(P5CR), ASNS Asparagine synthetase Chr.7 [510206, (IW), 5':AA053213, 3':AA053461] 
(ASNS), SID 470936, Homo sapiens mRNA for for histone H2B, clone pjG4-5-14 
[5':AA034106, 3':AA032092] (H2B), SID W 376009, HISTONE H1D [5':AA040305, 
3':AA040326] (HH), SID W 430196, LACTOYLGLUTATHIONE LYASE [5':AA010331, 
3':AA010332] (LL). 
 

In addition, P5CR and L-asparaginase are highly negative-correlated in 
Table 5. P5CR is involved in the alanine and aspartate metabolism. ASNS is 
involved in the arginine and proline metabolism. These two metabolisms are 
closely located in the metabolic and regulatory pathway in the Kyoto 
Encyclopaedia of Genes and Genomes (KEGG) located on the web at 
(http://www.genome.ad.jp/kegg). And the similarity of P5CR and ASNS in 
relation to the negative correlation with L-asparaginase seem to indicate a 
meaningful relationship.  
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Table 4. The conditional probability table for P(L-asparaginase | ASNS) and P(L-
asparaginase | ASNS, Cancer type = Leukaemia) (the values in the parentheses). The 
quantified probabilistic dependency between the expression level of ASNS and the activity of 
L-asparaginase coincides with the known biological fact (the negative correlation). 
 

 L-asparaginase = 
low 

L-asparaginase = 
normal 

L-asparaginase = 
high 

ASNS = low 0.19857 (0.17536) 0.27471 (0.22838) 0.52672 (0.59626) 
ASNS = normal 0.31110 (0.27128) 0.49795 (0.53790) 0.19095 (0.19081) 
ASNS = high 0.42159 (0.38500) 0.36279 (0.42437) 0.21561 (0.19063) 

Table 5. The conditional probability table for P(L-asparaginase | P5CR). The quantified 
probabilistic dependency between the expression level of P5CR and the activity of L-
asparaginase is similar to that between ASNS and L-asparaginase. 
 

 L-asparaginase = 
low 

L-asparaginase = 
normal 

L-asparaginase = 
high 

P5CR = low 0.27510 0.35226 0.37263 
P5CR = normal 0.31621 0.41072 0.27307 
P5CR = high 0.33837 0.39664 0.26499 

4. CONCLUSION AND FUTURE WORK 

In this paper, the NCI60 dataset was analysed for the molecular 
pharmacology of cancer. First, the 60 cell lines were clustered using the 
STVQ algorithm. While the hierarchical clustering algorithm used in [Scherf 
et al., 2000] operates in an agglomerative way and provides the tree-like 
cluster structure, the STVQ algorithm, starting from a coarse global structure, 
successively refines the cluster structure with some annealing schedule. And 
it finally represents the cluster structure in a two- or three-dimensional lattice. 

We have performed cluster analyses based on the gene expression pattern 
and the drug activity pattern, respectively. The differences of the cluster 
structures were shown quantitatively in terms of the averaged Pearson 
correlation coefficient and the clustering entropy. The drug activity pattern 
less reflects the tissue of origin than the gene expression pattern, and it is 
suggested that this might be partly due to the expression of particular genes 
related to some drug activities. From these results, the drug activity pattern is 
analysed with gene expression patterns and cancer types for more detailed 
information, and Bayesian network learning was applied for this purpose. 

In the experiments, a fast search heuristic was applied to learning the 
Bayesian network with hundreds of nodes. Among hundreds of attributes, 
only a few of them, including the cancer type and some genes, show notable 
relations to others. In order to perform the probabilistic inference, we 
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reduced the dimensionality of attributes by clustering. By using prototypes, 
the known biological facts could not be discovered clearly. This might be 
due to the loss of useful information in the original data by the use of gene 
prototypes and drug prototypes. Hence, the dimensionality reduction by 
attribute selection was performed. Focusing on the discovery of relationships 
around L-asparaginase, we selected 12 genes and 4 drugs by clustering. The 
results of the analysis coincide with the known biological facts: the negative 
correlation between L-asparaginase and ASNS, as well as the influence of the 
kind of cancer on this negative correlation. In addition, the positive 
correlation between ASNS and P5CR was discovered. Biologically, ASNS 
and P5CR are located closely in the metabolic pathway. To summarize, the 
relationships among genes, drugs, and cancer types could be modelled by 
Bayesian network learning. This suggests that Bayesian network learning 
and clustering are appropriate for the exploratory analysis of high-
throughput genomic data. 

Directions for further research are as follows: In a complex domain such 
as DNA microarray analysis, the learned results are prone to be unreliable 
because of the small sample size compared with the number of attributes. 
The eMCMC (evolutionary Markov chain Monte Carlo) method [Zhang et 
al., 2001] might be an appropriate solution. The more efficient and robust 
learning and inference algorithms for large Bayesian networks should also 
be studied. In addition, combining knowledge from biomedical literature 
with data analysis is a candidate for the improvement of the quality of results. 
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