An On-Line Learning Method for Object-Locating Robots using Genetic
Programming on Evolvable Hardware

Ho-Sik Seok, Kwang-Ju Lee, Je-Gun Joung and Byoung-Tak Zhang
Artificial Intelligence Lab (SCAI)
Dept. of Computer Engineering
Seoul National University
Seoul 151-742, Korea
{hsseok, kjlee, jgjoung, btzhang}@scai.snu.ac.kr

Abstract

Evolvable hardware is a new concept of FPGA
which has a capability of dynamic reconfiguration dur-
ing run time. Due to its dynamic reconfiguration abil-
ity, evolvable hardware can optimize itself through
learning. In this paper, we present a method for
learning robot controller on evolvable hardware. For
learning, we employ genetic programming. Typically,
genetic programming uses tree-structured representa-
tion. However, tree structures are inconvenient for
crossover in hardware and tend to consume much re-
source. Therefore, we use a linear chromosomes to rep-
resent genetic trees on evolvable hardware. The learn-
ing objective of the robot is to locate a light source
avoiding obstacles.

1 Introduction

Evolvable hardware is a new concept of FPGA
(Field Programmable Gate Array) which has a capa-
bility of dynamic reconfiguration during run time. Due
to its dynamic reconfiguration ability, evolvable hard-
ware is applicable to many areas such as fault-tolerant
systems and adaptive systems [1]. Various evolution-
ary algorithms have been used as evolutionary mecha-
nisms for evolvable hardware. Many researchers used
binary-string genetic algorithms. Due to their advan-
tage that the configuration bitstreams can be regarded
as chromosomes. Alternatively, genetic programming
can be used for evolving codes on evolvable hardware.

Since genetic programming usually uses tree struc-
tures and trees are flexible, genetic programming is ap-
propriate for evolving complex-problem solving strate-
gies [2]. We attempt to combine the advantages of
evolvable hardware and genetic programming. Robot
behavior can be described as a mapping from sensor
inputs to motor outputs. Therefore, after determining

the inputs and outputs of a robot, genetic programs
can be used to represent the mapping. Through re-
ordering nodes of the genetic tree, the control struc-
ture of the robot can be adapted.

By combining genetic programming and evolvable
hardware, we were able to construct a robot controller
which can be adapted to environmental changes. In
our approach, robot controller evolves its control
structure using environmental data on evolvable hard-
ware.

The paper is organized as follows. Section 2 re-
views related work. Section 3 describes implementa-
tion details. In Section 4, some experimental results
are shown. Section 5 summarizes the result and points
out some future work.

2 Related work

There are many attempts to control an autonomous
robot by genetic programming. Ebner evolved the con-
trol structure of a real mobile robot using genetic pro-
gramming [3]. Wilson evolved hierarchical behaviors
to locate a goal object in a maze for a mobile robot
[4].

Some authors have attempted to evolve emergent
collective behaviors using genetic programming. Ben-
nett IIT used genetic programming to evolve a common
program that controls foraging for food by ants [5].
Zhang introduced a framework, called fitness switch-
ing, that facilitates evolution of composite emergent
behaviors of a multiagent system using genetic pro-
gramming [6]. All these works have used software ge-
netic programming as an evolutionary engine.

Genetic algorithms are frequently used as a mech-
anism for evolving hardware circuits. Here, configura-
tion bitstreams of evolvable hardware are represented
as chromosomes. Keymeulen used a genetic program-



Figure 1: An example of a genetic tree. This tree repre-
sents a general control structure of an autonomous robot.
The meaning of the left subtree is “if an obstacle is found,
light sensor L1 is bright, and other conditions are met,
then move forward (MF).”

i i Reconf-
Speci- Coding guration

fication

Figure 2: The procedure for hardware evolution. Start-
ing from a population of initial circuits, the circuits are
improved by repeating the evolutionary design steps.

ming algorithm for building a navigation system for
an autonomous robot [7]. Thomson used genetic algo-
rithms to design electronic circuits automatically [8].

Genetic programming has also been used for evolv-
able hardware. Sakanashi applied genetic program-
ming to digital circuit design: Evolution of binary
decision diagrams. He used genetic programming to
improve the hardware description in binary decision
diagrams [9)].

3 Hardware evolution of genetic trees
3.1 Robot control using genetic programming

After specifying each sensor’s input range and
robot’s output actions, the elements that determine
the input-output of control programs are easily ob-
tained. By transforming these elements to correspond-
ing nodes of genetic tree, the preparation for genetic
programming representation of control programs is
completed.

Fig. 1 shows a control structure of a robot that
finds a light-source while avoiding obstacles. This con-
trol program interprets environmental data as follows.

First, it determines if there is an obstacle. Then, it
goes to one of the two subtrees. At the subtree below
the root node, it determines which light sensor directs
to the light source. By repeating above procedure, it
reaches one of the terminal nodes. Then, the terminal
node selects one of the possible actions of the robot.
The objective of genetic programming is to find an
optimal tree structure that controls the robot to the
target position.

Fig. 2 shows the procedure for hardware evolution.
First, the designer specifies the circuit that he wants.
Second, the designer writes some initial code. Third,
the design is synthesized by using a commercial CAD
program. Then, the following evolutionary steps are
repeated until a termination condition is satisfied: ge-
netic operation, fitness calculation, and selection.

3.2 Hardware evolution of genetic trees

While there have been several attempts to imple-
ment bitstring genetic algorithms on evolvable hard-
ware, relatively few attempts have been made to im-
plement genetic trees on evolvable hardware. The
usual GP tree structures can directly be represented
on evolvable hardware as shown in Fig. 3. But, in this
approach, the designer faces several problems that do
not occur in software genetic programming. First, due
to partial tree stucture, only restricted crossover is al-
lowed. Second, a dominant part of hardware resources
are consumed by routing. Third, a significant part of
hardware resource is never used for placement nor for
routing. To overcome these problems, we use a linear
representation scheme.

We use linear strings to represent trees on evolv-
able hardware. To represent a genetic tree in binary
strings, we separate each path from the root node to
each terminal node, then each path is transformed to
a binary string. Binary strings are of the same length.
By using a linear representation, several advantages
can be obtained. First, crossover operator can easily
be implemented. Second, we can save hardware re-
sources for routing. Third, we can increase the total
resources utilization ratio. In our preliminary experi-
ments, we were able to save the resources for routing
by 12%, for example.

The terminal and function nodes we adopted are
shown in Table 1. The terminal nodes denote robot
actions. These are move forward (MF), move back-
ward (MB), move forward and turn left (MTL) and
move forward and turn right (MTR). The function
nodes interpret sensor inputs. They consist of two
different kinds of IF-statements:



\ U4TL\ \ UlTr'/m] ua }7{ U2 |-—{L16]|
[L1 [uaT U2 Ul |- Ltl |
[uaTl” | urrr/u?}«—{ U4 |—] Lia |
/@ o1 | i |

[v2T] [ua ] ([uz] [ua |-{L32]
[LaT] |[w2T] |[[uaT] |[LaT] [Va ]
LaT| [LaT] | [raT] [ui | |[u2T]
[viT] [[uvaT] [uvZzT]

u2T

Figure 3: An example of hardware representation of a
tree-structured chromosome. This representation scheme
does not assure the same depth for all subtrees.

Table 1: Functions and terminals.
Symbol

Terminal nodes MF, MB, MTR, MTL

Function nodes IF-L0, IF-L1, IF-L2
IF-L3, IF-L4, IF-L5
IF-USO, IF-US1, IF-US2

e IF-LO ~ IF-L5: the intensity of the light sen-
Sors.

e IF-USO ~ IF-US2: the ultra-sonic sensor values
indicating the distance to an object.

4 Experiments and results
4.1 Evolution of robot controllers

The structure of the robot controller is determined
through evolution of genetic trees. For efficient evo-
lution, the evolution procedure is divided into two
stages. In stage one, reordering of function nodes is
performed. The function set consists of 9 function
symbols. We use 4-bit binary string to represent each
function nodes. Since we allow trees of depth 8, we
should maintain 128 binary strings. In stage one, we
repeat tree reordering until all interpretation paths of
environmental data are obtained. Fig. 4 shows the
fitness curves which indicate the advantage of using
linear representation. By using linear representation,
convergence speed is increased by a factor of approax-
imately three.

In stage two, proper behavior to each sensor-input is
determined, and the evolution procedure is combined

55000

Tree representation ——
Linear representation -----

50000 f-.|
45000 -

40000 -

Fitness

35000 -

30000 |

25000
o

50 100 150 200 250 300

Number of Evaluations

Figure 4: Comparison of experimental results for tree
and linear representations. For tree representation, muta-
tion was used as the only genetic operator since crossover
caused difficulties in hardware implementation. For linear
representation, both mutation and crossover were used.

Figure 5: The robot used in the experiment.

with robot move. The result of movement by the pre-
vious control structure is used for reconfiguration of
the genetic trees.

4.2 Experimental results

The robot has six light sensors for detecting the goal
and three ultra-sonic sensors for estimating the dis-
tance between the robot and the obstacles. The learn-
ing objective of the robot is to locate a light source
while avoiding obstacles. The robot is shown in Fig. 5.

Fitness of the robot controller was evaluated as fol-
lows:

Fitt+1) = [Fit(t) + Lmas — Lyw)Wi
(2Ufw + U, + U,
2Umaw

+ Penalty]/2

Ve x Wy (1)

Where the meaning of the symbols are Fit(t): Fitness
value at step ¢, Lyq: Maximum input value of the
light sensor, Wr, Wir: Weights of the light and ultra
sonic sensors, k: Scaling factor, Uj,q,: Maximum in-
put value of ultra sonic sensor, Uy, Uj, Uy,: Estimated
distance of the forward, left, and right ultra sonic sen-
sor.



LEFT FOR)
RIGHT FORWARD ---3%--
BACK &

''''''

FITNESS

% —
5 10 15 20 25 30 35

STEPS

Figure 6: This graph shows the fitness curves about a sen-
sor input when the left light sensor is the most intensified
and the forward ultra sonic sensor estimated the longest
distance to an obstacle. As known from fitness curves, the
action MTL has the largest fitness value.

We assign more weights on the light sensor inputs
since the ultra sonic sensor input may be affected by
noise. By modifying W and Wy, we can change the
objective of the robot. By assigning more weight on
Wy, the learning objective of the robot is determined
as locating the goal.

Fig. 6 shows the learning result of the robot. At
35th generation, the robot found the proper behavior
(MTL) for the given sensor input pattern. As genera-
tion goes on, the robot finds proper behaviors for each
sensor input pattern.

5 Conclusion

We use genetic programming for evolving a robot
control structure. For implementation of genetic trees
on evolvable hardware, we take a linear representation
scheme. Linear representation has several advantages.
First, it is easy to implement crossover operation. Sec-
ond, it uses less resources for routing.

We applied our representation scheme to an object
locating robot. Initially, a set of randomly structured
genetic trees is created. As robot continues wandering,
the robot uses sensor inputs to evolve proper control
structures. For efficient evolution, we divided the evo-
lution procedure into the interpretation path stage and
the behavior stage.

Due to the limit in hardware resource, we evolved
relatively simple control structure. For evolving more
complex behaviors, future research on compact rep-
resentation of genetic trees on evolvable hardware is
required.

Acknowledgements

This research was supported by the Korea Science
and Engineering Foundation (KOSEF) under grant
981-0920-107-2.

References

[1] L. Paul, “The ‘evolvable motherboard’: A test
platform for the research of intrinsic hardware
evolution,” Cognitive Science Research Paper 479,
1998.

[2] J. R. Koza, “Genetic programming: On the pro-
gramming of computers by natural selection,”
Cambridge, MA, USA, MIT Press.

[3] M. Ebner, “Evolution of control architecture for a
mobile robot,” International Conference on Evolv-
able Systems, pp. 303-310, 1998.

[4] M. S. Wilson et al., “Evolving hierachical robot
behaviours,” Robotics and Autonomous Systems,
pp- 215-230, 1997.

[5] F. H. BennettIII, “Automatic creation of an effi-
cient of an efficient multi-agent architecture using
genetic programming with architecture-altering
operations,” Genetic Programming 1996: Proceed-
ings of the First Annual Conference, pp. 30-38,
1996.

[6] B-T. Zhang and D-Y Cho, “Fitness switching:
Evolving complex group behaviors using genetic
programming,” Genetic Programming: Proceed-
ings of the Third Annual Conference, pp. 431-438.
1998.

[7] D. Keymeulen, “An evolutionary robot navigation
system using gate-level evolvable hardware,” In-
ternational Conference on Evolvable Systems, pp.
195-209, 1996.

[8] A. Thompson, “An evolved circuit, intrinsic in sil-
icon, entwined with physics,” International Con-
ference on Evolvable Systems, pp. 390-405, 1996.

[9] H. Sakanashi et al., “Evolution of binary deci-
sion diagrams for digital circuit design using ge-

netic programming,” International Conference on
Evolvable Systems, pp. 470-481, 1996.



