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ABSTRACT: Transcription factors regulate gene 
expression by binding to gene upstream region. Each 
transcription factor has the specific binding site in promoter 
region. So the analysis of gene upstream sequence is 
necessary for understanding regulatory mechanism of genes, 
under a plausible idea that assumption that DNA sequence 
motif profiles are closely related to gene expression 
behaviors of the corresponding genes. Here, we present an 
effective approach to the analysis of the relation between 
gene expression profiles and gene upstream sequences on 
the basis of kernel canonical correlation analysis (kernel 
CCA). Kernel CCA is a useful method for finding 
relationships underlying between two different data sets. In 
the application to a yeast cell cycle data set, it is shown that 
gene upstream sequence profile is closely related to gene 
expression patterns in terms of canonical correlation scores. 
By the further analysis of the contributing values or weights 
of sequence motifs in the construction of a pair of sequence 
motif profiles and expression profiles, we show that the 
proposed method can identify significant DNA sequence 
motifs involved with some specific gene expression patterns, 
including some well known motifs and those putative, in the 
process of the yeast cell cycle. 

1 INTRODUCION 

Gene regulation is one of key mechanisms in cellular 
processes in living organisms. Although genes are basically 
transcribed by RNA polymerase, the expression level of 
genes is regulated by many transcription factors (TFs). 
Transcription factors are proteins which are bound to the 
promoter region and thereby regulate gene expression. The 
upstream region of genes has specific transcription factor 
binding sites (TFBSs) for each transcription factors. The 
TFBS is also called a regulatory sequence motif. Since gene 
expression is mainly regulated through the binding of TFs 
to their specific TFBSs, it is highly likely that there is a 
close relationship between sequence motif profiles and 
expression profiles of genes. 

At past, the study on gene regulation was mainly based 
on wet-lab experiments. But as high-throughput techniques 
such as microarray experiments develop, the schemes to 
study biological issues are being diversified. Especially the 
high-throughput technologies make it possible for one to 
handle and to analyze a lot of diverse data by computational 
methods. Spellman et al. [1] and Cho et al. [2] analyzed the 
massive gene expression profiles during the cell cycle 
process of the yeast Saccharomyces cerevisiae by the 
application of computational methods to the 

high-throughput microarray data. Their researches 
generated valuable data for yeast gene expression pattern 
analysis. After them, many researches through microarray 
data analysis have been actively done for the yeast genome. 
It was shown that one can identify many useful biological 
facts through the application of a variety of computational 
methods, including clustering and dimensionality reduction, 
to the microarray-based gene expression data [3, 4]. 

In particular, there have been many researches which 
attempted to find regulatory motifs from gene upstream 
sequences. One useful method is based on a statistical 
analysis of upstream sequence of genes. It works by directly 
searching for significant sequence motifs on gene upstream 
sequences, using such methods as maximum-likelihood 
estimation or Gibbs-sampling [5, 6]. Other researches using 
alternative methods have also been progressed. Recently, 
there was a research to find regulatory sequence motifs 
using a SOM (self-organizing map)-based clustering 
method [7]. 

In another way, there have been many studies for the 
identification of regulatory sequence motifs by linking gene 
expression patterns and DNA sequence motif profiles. The 
approaches of this kind can enhance one’s understanding of 
gene regulation, in addition to the finding of regulatory 
sequence motifs themselves. Tavazoie et al. [8] predicted 
genetic regulation and function of each ORF by regulatory 
motif analysis. Recently, in addition, Beer and Tavazoie [9] 
presented that gene expression profiles can be predicted 
from sequence information by Bayesian networks, to a 
relatively high accuracy [9]. Although many biological 
studies about gene regulation are progressed together with 
vast amount of data and various computational methods, the 
definite relationship between sequences and expression 
patterns has been unknown so far. 

In this paper, we analyze the effect to regulation over 
gene upstream sequences using Kernel canonical correlation 
analysis (kernel CCA). Kernel CCA is a method for 
investigating relationships between two different data [11, 
12, 13]. It works by first (implicitly) mapping each data 
point to higher dimension space than the original input 
space and then by analyzing the relationship between each 
projected component using kernel trick. 

We apply the kernel CCA to a paired set of gene 
upstream sequence profiles and gene expression profiles of 
the yeast Saccharomyces cerevisiae. By the application, we 
inquire whether there is a significant relation between the 
two profiles. We also search for significant sequence 
regulatory motifs for specific expression patterns by 
analyzing the contributing values or weights of those motifs 
in relating the two different profiles. Eventually, we show 

 



that our method can identify significant sequence motif, 
some well known and others putative, which affects gene 
regulation. 

2 METHODS 

2.1 Investigation of the Relationship between 
Expression Profiles and Sequence Motif Profiles 
Canonical correlation analysis (CCA) [10] is a classical 
multivariate statistical method for finding linearly correlated 
features from a pair of different data sets. The Kernel CCA 
is a version of nonlinear CCA where the kernel trick is 
utilized to find nonlinearly correlated features from two data 
sets [11, 12, 13]. In other words, while CCA is limited to 
linear features, kernel CCA can capture non-linear relations.    
Kernel CCA has shown its effectiveness in several 
applications including text retrieval [11], biological data 
analysis [14], and so on. 
 
 

 
Figure 1 illustrates a basic scheme of Kernel CCA in our 

application of the integrated analysis of DNA sequence 
motif data and gene expression data. By using Kernel CCA, 
we try to find maximal correlated features between the gene 
expression and the sequence motif profile. Here, a gene x is 
represented by two separate profiles in terms of its 
transcriptional behavior and its upstream sequence, that is, 
by xexp=(e1, e2, ..., eN) and xseq=(m1, m2, ..., mM) respectively. 
The value ei (1 ≤ i ≤ N) is the expression value of the gene 
in the i-th sample or experimental condition from a 
microarray data and mj (1 ≤ j ≤ M) denotes the occurrence 
frequency of the j-th sequence motif in the upstream region 
of the gene. For the detection of the correlated features 
between the two data sets, xexp and xseq are first mapped to 
Hilbert space, H, by function φ. That is, each x is projected 
into two direction fexp and fseq in Hilbert space according to 
its representation, 

)(, expexpexpexp fu xφ=          (1) 

)(, seqseqseqseq fu xφ=          (2) 

 
where ⋅⋅,  denotes the dot product. Kernel CCA aims at 

finding maximally correlated features between {xexp} and 
{xseq}, 
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where λexp and λseq are regularization parameters. The fexp 
and fseq can be found by solving the following Lagrangean: 

 

],])[[(
2

]])[[(
2

])][])([[(

2

2

0

seqseq
seq

expexp
exp

seqseqexpexp

uEuE

uEuE

uEuuEuEL

−−

−−

−−=

ρ

ρ     (4) 

 
where ρexp and ρseq are Lagrangean multipliers. Again, the 
Lagrangean of Equation (4) can be rewritten in terms of 
kernel matrices,  
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where I denotes the identity matrix. Kexp is the kernel matrix 
for expression profile data and Kseq is the kernel matrix for 
sequence motif profile data. By mediating regularization 
parameter λ, Lagrangean value is maximized. Finally, the 
solution of the kernel CCA can be given by solving a 
generalized eigenvalue problem, 
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When given αexp and αseq as the solution of the above 

generalized eigenvalue problem with the largest eigenvalue, 
canonical correlation scores (CC score) for xseq and xexp are 
estimated by useq = Kseqαseq and uexp = Kexpαexp. The CC 
scores are the low dimensional mapping of genes in terms 
of two separate representations and can be used to show the 
salient correlation between the two. Once we have obtained 
α vector, the weights of motif and expression profile, Wseq 
and Wexp, are also obtained as follows: 

 
exp

T
expexp αXW =               (7) 

sequence 
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Figure 1: The basic scheme of Kernel CCA. The sequence 
data and expression data are transformed to Hilbert space 
by φ function. By taking inner products, we can find uexp 
and useq which maximizes the correlation between the two 
data sets. 
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As the weight of specific sequence motif gets high value, 

the motif can be said to be strongly correlated with the 
expression patterns of those genes with the high-valued CC 
scores. That is, if the absolute value of the weight of a 
specific motif is high, the motif is a candidate to be 
investigated for its effectiveness in regulating genes of 
which upstream region contain it. 

2.2 Data Representation 
We used microarray data by Spellman for getting 
expression profiles of all ORFs (open reading frames) in 
yeast [1]. It presents the expression profile during the cell 
cycle. It consists of total 18 time points in alpha factor 
synchronization case. 

The sequence data is experimented in two cases. First, we 
used motif data extracted by Pilpel [15]. These are 
composed of 42 motifs. We extracted motif information in 
each ORF using AlignACE program [5]. At first, we 
analyzed relationship between these data through Kernel 
CCA methods. 

Next, we analyzed the relationship with expression 
profiles using raw sequence data. We extracted gene 
upstream sequences as the size of 985 bases from each gene. 
From base sequences, we calculated frequency of n-mer 
base combination in each gene. For example, if n is 4, every 
gene has 256 (= 44) base combinations, and if n is 5, each 
gene has 1024 (= 45) base combinations. And then, the 
frequency of each base combination is counted. And we 
analyzed data in the similar manner. 

But these data themselves described above cannot be a 
Kernel matrix. Therefore we should convert these matrices 
to the Kernel matrix. We applied a linear kernel or a 
polynomial kernel to the sequence frequency matrix by 

. If d is 1, it is linear kernel and 

if other number, it is polynomial kernel. 
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parameter and function d is a Euclidean distance. We 
analyzed the relationship of them using kernel CCA. 

 

3 RESULTS 

First of all, we analyzed the relationship of expression data 
with motif data extracted by AlignACE. We used total 551 
ORFs related to cell cycle. The degree of polynomial kernel 
sets 3 in the sequence data. The parameter σ is 0.5 in 
Gaussian RBF kernel applying to expression data, and the 
regularization parameter is 0.1. After applying kernel CCA 
methods, we plotted using the CC1 score. The CC1 score 
means the first canonical correlation score. The plot of CC1 
score shows close relationship between sequence 
information and expression profiles (Figure 2). 

In Figure 2, each point corresponds to one gene and the 
diagonal shapes of points mean that correlation has been 
detected. The right side one of Figure 2 is to magnify parts 
crowded with points. 

 
 

Motif Weight Function 

SWI5 0.89026
Binding site in transcription factor 
that activates transcription of genes 
expressed in G1 phase and at the 
G1/M boundary 

   

SFF’ 0.45399
Binding site in transcription factor 
FKH1 of the  forkhead family that 
regulates the cell cycle 

   

MCB 0.29633 Binding site in transcription factor 
MBF that activates in late G1 phase

   

LYS14 0.21796
Transcriptional activator involved 
in regulation of genes of the lysine 
biosynthesis pathway 

   

ALPHA2 0.16532

Silenced copy of ALPHA2, 
encoding a homeobox-domain 
containing protein that associates 
with Mcm1p in haploid cells to 
repress a-specific gene expression 
and interacts with A1p in diploid 
cells to repress haploid-specific 
gene expression  

 

 
 
The results of significant motifs searched by weight 

function are shown in Table 1. In Table 1, SWI5 motif has 
the highest weight. SWI5 is one of typical transcription 
factors in yeast cell cycle. It has been known as acting in G1 
phase and M/G1 boundary in cell cycle [16, 17]. SFF’ motif 
is a binding site of FKH1 transcription factor. FKH1 forms 
SFF protein with NDD1. In SFF, FKH1 is a DNA binding 
component and NDD1 acts transcriptional regulatory role. 
SFF is also an important protein in cell cycle, and works 
mainly late S phase [18]. 

Figure 2: CC1 Score (Expression profile vs. Motif data). 
This plot shows diagonal shapes that mean close 
relationship between the expression data and the sequence 
data 

Table 1: High scored motifs. The table shows the top 5 
rank of the results. The highly ranked motifs have been 
known as significant motifs like SWI5, SFF’, and 
MCB motif. 

 



 
 
MCB motif is a very famous motif in yeast cell cycle. It 

is a binding site in MBF protein. MBF protein is composed 
of MBP1 and SWI6. In MBF protein, the DNA binding 
component is MBP1 and the regulatory component is SWI6. 
It is well known that the MBF protein regulates 
transcription of genes in late G1 phase [18, 19]. ALPHA2 
protein is also inferred that it is related to cell cycle. That 
protein can be associated with MCM1 protein and represses 
other genes [20, 21]. MCM1 protein is also known as a 
significant protein in cell cycle [18, 22]. 

In our results, motifs of relatively high weight were 
known motifs related to cell cycle. Therefore our methods 
using Kernel CCA could be validated. 

At the second experiment, we used the raw upstream 
gene sequence data. The sequence window size, n, is 5, so 
there are total 1024 (=45) attributes. Then the linear kernel 
was applied to the sequence data, and Gaussian RBF kernel 
was applied to the expression data at parameter σ value of 
0.3. The regularization parameter is 0.1. Also, in this case, 
CC1 score and its plot show close relationship between the 
sequence data and expression profiles (Figure 3). 

Like Figure 2, the right side graph is one enlarged the 
specific clouded part. Motifs having higher weight are 
shown in table 2. 

The results show the 5’-GCGTG-3’ sequence has the 
highest weight score. It is similar to MCB sequence 
(5’-ACGCGT-3’). The sequence ranked in the highest 
position appears only one base shift from MCB sequence. 
As we explained previously, MCB is an important motif in 
cell cycle. Motifs ranked in high position can be mostly 
supposed to be important motif in cell cycle. 

Until now, we only analyzed the first component. We 
also observed the second component results. Table 3 shows 
the second component results. From the second component, 
we found the sequence identical to MCB motif. The fifth 
rank sequence (5’-CGCGT-3’) is exactly same to known 
MCB motif sequence (5’-ACGCGT-3’). That is, it could be 
re-confirmed MCB motif strongly affecting gene expression 
in cell cycle. And also, the sequence similar to SCB motif 
has high score. In our results, the fourth rank sequence is 
5’-CCACG-3’. It is also only one base shift from known 
SCB sequence (5’-CACGAAA-3’). 

 

 
Sequence Weight Motif information 

GCGTG 0.079567 MCB-like sequence 
(ACGCGT) 

CGTGT 0.075340 MATalpha2-like 
(CRTGTWWWW) 

TGCGT 0.063041 - 

TTGCG 0.057494 - 

CATCA 0.054292 - 

CATGA 0.050729 - 

GCATG 0.049969 - 

GATCA 0.049208 - 

ATGTG 0.048790 - 

TTAGA 0.047648 - 

TGTCA 0.046667 - 

CATGT 0.046299 MATalpha2-like 
(CRTGTWWWW) 

CCGGA 0.044133 MCM1-like sequence
(CCNNNWWRGG) 

CTAGA 0.042840 - 

TAAGG 0.042387 MCM1-like sequence
(CCNNNWWRGG) 

 

 
 
SCB motif is a representative important motif with MCB 

motif in yeast cell cycle. SCB motif is a binding site of SBF 
protein. SBF protein is constituted SWI4 and SWI6. SWI4 
is a DNA binding component and SWI6 has a regulatory 
role [18]. And other sequences in higher position can also 
infer to significant motifs. Therefore, as we inspect closely 
the second component as well as the first component, we 
could find other meaningful results. 

4 DISCUSSION 

We could obtain meaningful results through applying kernel 
methods, mapping raw data to higher dimensional space, to 
classical statistical methods. By the methods called Kernel 
CCA, it was possible to analyze the relationship between 
promoter sequences and expression profiles, and, as the 
result, we showed close relationship between two data 
through CC score. Besides, we could find significant motifs 
affecting gene expression in yeast cell cycle. It was also 
possible to confirm that our results are agreed with previous 
works. Furthermore, we can also find putative important 
regulatory motifs. 

 

Figure 3: CC1 Scores using raw upstream sequence data. 
This plot shows the expression data also closely related 
with the motif data using 5-mer base sequences. 

Table 2: High scored motifs in the first component 
using 5-mer base combination data. This table shows 
top 15 results. The sequence inferred to MCB motif is 
top ranked. 

 



Sequence Weight Motif information 

GGCGA 0.019679 - 

CGGAA 0.019447 - 

GAACG 0.019151 - 

CCACG 0.018992 SCB-like sequence 
(CACGAAA) 

CGCGT 0.017870 MCB-like sequence 
(ACGCGT) 

ACCTG 0.017713 - 

GCACT 0.017208 - 

CCTCG 0.016666 - 

GTGTT 0.016595 MATalpha2-like 
(CRTGTWWWW) 

GGACC 0.015884 - 

TGGCC 0.015816 - 

GTCCG 0.015422 - 

CGGAG 0.015207 - 

CAGGC 0.015203 - 

GGCGT 0.014963 - 

 

 
Previously, many works are mainly performed using one 

type data. But as amounts of various data and information 
increase, it has been important to integrate many data. 
Actually, if we use diverse information for specific research 
purpose, it has been known the fact that the results are much 
better. Kernel CCA has the advantage of using data of 
different types together. Such as our works, each different 
kernel is applied to each data, and we can analyze the 
relationship between different data in higher dimension 
space. And we can find more significant features using 
weight function applied to each attribute. 

But it remains some difficult aspects in our method. 
Using extracted motif data, we could get relatively good 
results. But it is slightly hard to interpret results using raw 
upstream sequence data. We could experiment with only 
5-mer case or under that for computing power. Since the 
size of most known motifs are over 5-mer, it is short 
window size. But if we expand the window size, the base 
combination number also increases exponentially (46=4096, 
47=16384, etc.). In that case, it is hard to learn data due to 
many attribute number. And our methods are possible to 
apply only the priorly decided base size. That is, it doesn’t 
reflect individually different motif sizes. Also, it is difficult 
to perform using all genes at PC level. 

If the computing power is supported, our methods can be 
new motif finding algorithms. Although the sequence size is 
decided constantly, if the experiment is performed 
repeatedly about various sizes, it will be able to find the 

motif sequence of various sequence length. That is, we can 
be to find the new motifs from gene expression profiles. 

We used yeast as the model organism and analyzed using 
public cell cycle microarray data. Our methods can easily 
apply to other organisms. Of course, it is also possible to 
apply to other expression data not cell cycle. In the yeast 
case, although many related researches have been preceded, 
it is lots of lack and hardness of related works in many 
organisms including human. If our methods apply to 
research using other data, it also helps the understanding in 
complex organism. 

Furthermore, if we expand our methods, we will be able 
to find the synergistic motif combination. Generally, the 
transcription of gene is regulated by many complex 
mechanisms. That is, gene regulation is affected by 
combination of many transcription factors. Therefore it will 
be valuable works to find the synergistic motif combination. 

Our results make it possible to estimate the expression 
patterns from upstream sequences. Conversely, given an 
expression profiles, we will also be able to predict the key 
role motifs in the upstream region of a gene. From these, it 
is possible to predict important transcription factors 
regulating the specific gene. Therefore it helps the 
regulatory mechanism prediction, and it will make complex 
gene regulatory process more brightly. 
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Table 3: Top 15 ranked motifs in the second 
component. The motif inferred to MCB or SCB motif 
is located in high position 
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