Bayesian Evolutionary Algorithms for Evolving Neural Tree Models of
Time Series Data

Dong-Yeon Cho
Artificial Intelligence Lab (SCAI)
School of Computer Science and Engineering
Seoul National University
Seoul 151-742, Korea
dycho@scai.snu.ac.kr

Abstract- Model induction plays an important role in
many fields of science and engineering to analyze data.
Specifically, the performance of time series prediction
whose objectives are to find out the dynamics of the un-
derlying process in given data is greatly affected by the
model. Bayesian evolutionary algorithms have been pro-
posed as a method for automatic model induction from
data. In this paper, we apply Bayesian evolutionary al-
gorithms (BEAs) to evolving neural tree models of time
series data. The performances of various BEAs are com-
pared on two time series prediction problems by vary-
ing the population size and the type of variation opera-
tions. Our experimental results support that population-
based BEAs with unlimited crossover find good models
more efficiently than single individual BEAs, parallelized
individual-based BEAs, and population-based BEAs with
limited crossover.

1 Introduction

A time series is a sequence of observations taken sequentially
in time [3]. Many time series data sets can be found in our
life: changes of the stock index or exchange rate, hourly ob-
served output values of some systems, average temperature of
a certain place, and so on. The basic characteristic of a time
series is that adjacent values are dependent. Generally speak-
ing, past values in the sequence influence future values. The
aim of time series prediction (also called forecasting) is to an-
alyze this dependence which is generally believed to be rep-
resented by nonlinear relationships and to find out the model
which accurately predicts the evolution of the system [14].
It usually involves searching the structure and parameters of
models which minimize the error for the test data as well as
the training data. Bayesian inference can be applied to these
problems [10]. However, integrations of high dimensional
functions should often be calculated to estimate the desired
probability. This is the most difficult part in Bayesian infer-
ence.

Markov chain Monte Carlo (MCMC) methods [5] have
been used to perform Bayesian inference without calculating
the complex integration. In this method, samples are drawn
from the required distribution by constructing a Markov chain
and then averaged to approximate the integration. The previ-

0-7803-6375-2/00/$10.00 ©2000 IEEE.

1451

Byoung-Tak Zhang
Artificial Intelligence Lab (SCAI)
School of Computer Science and Engineering
Seoul National University
Seoul 151-742, Korea
btzhang @scai.snu.ac.kr

ous MCMC methods could only be used to find the fittest pa-
rameters of a fixed-structure model. Green [6] extended the
application of MCMC to the variable-structure models, for
example, searching the optimal number of components in the
Gaussian mixture [12] or hidden units of feed-forward neural
networks [13] and radial basis function (RBF) networks [1].

Evolutionary computation has been used to find the ap-
propriate structure and parameters of models for data in sci-
entific and engineering communities. Several authors have
used evolutionary algorithms to design good models for time
series prediction. Harrald and Kamstra [7] used evolution-
ary programming to evolve single hidden-layer perceptrons
for combining forecasts of stock price volatility. Kreutz et al.
[9] employ an evolutionary algorithm to the optimization of
a mixture of densities model for time series forecasting with
dynamical noise and missing data. Angeline [2] presents an
evolutionary method that evolves a class of dynamic systems
with a form similar to neural networks. Chen and Lu [4] em-
pirically show that the evolutionary design of neural networks
is helpful in forecasting foreign exchange rates. Recently,
Zhang [16] proposed a Bayesian framework for evolutionary
computation and derived specific examples of the Bayesian
evolutionary algorithms (BEAs) for solving model induction
problems.

In this paper, we apply BEAS to time series prediction by
using neural trees. Neural tree models represent neural net-
works as a tree structure [15]. They have heterogeneous neu-
ron types in a single network and the connectivity of the neu-
rons are irregular and sparse. We present a new method to
build the neural tree model with the appropriate structure and
weights for given data by BEAs.)

The generality and uniformity of the Bayesian evolution-
ary framework allows existing simulation-based methods to
be viewed as special cases of BEAs. BEAs can be imple-
mented in various ways. For example, MCMC methods can
be regarded as the BEA whose population size is one and
thus there is no information exchange among the individuals
by crossover, while general evolutionary algorithms can be
regarded as a BEA with many individuals exchanging infor-
mation by crossover. In this paper, we study the performance
of BEAs on time series prediction in terms of the population
size, the types of variation operators, and the prior probabili-
ties.

The paper is organized as follows. In Section 2 we de-
scribe the structure of neural trees. Section 3 presents the
Bayesian evolutionary algorithms for evolving neural tree
models. Section 4 reports the experimental results for the
laser and sunspot data. Section 5 summarizes our findings
from this study.

2 Neural Tree Models

A neural tree is composed of terminal nodes, nontermi-
nal nodes, and weights of connecting links between two
nodes [15]. The nonterminal nodes represent neural units
and the neuron type is an element of the basis function set
F = {neuron types}. Each terminal node is labeled with an
element from the terminal set 7 = {z1,z2,...,Zn}, Where
z; is the ith component of the external input x. Each link
(j,i) represents a directed connection from node j to node i,
where node i is parent of node j and node j is child of node i.
There is also a value w;; which is associated with each link.
In this neural tree, the root node is a output unit and the ter-
minal nodes are input units. The depth of a neural tree dpqaz
is defined as the longest path length from the root node to any
terminal node of the tree.

Each nonterminal node gets input signals from maximum
bmaz child nodes and has a single output. Different neuron
types are distinguished in the way that the net inputs are com-
puted. One of the most popular neuron types is the sigma unit,
which computes the sum of weighted inputs from the lower
layer by

net; = » wi;y;, ey
J

where y; are the inputs to the ith neuron. Another useful
neuron type is the pi unit, which calculates the product of
weighted inputs from the lower layer as

net; = H WijYj»)

J

where y; are the inputs to i. The output of a neuron is com-
puted by the sigmoid transfer function

1
yi = f(net;) = 15 gnets? 3

where net; is the net input to the unit computed by Equation
(1) or (2).

An instance of the neural tree is shown in Figure 1, where
F={3,0}, T ={z1,22,23,24}, and bypo, = 4.

3 Bayesian Evolutionary Algorithms for Evolv-
ing Neural Trees

3.1 Bayesian Inference

Bayes theorem provides a direct method for computing the
posterior probability P(A|D) of each model A given the ob-

Figure 1: The structure of a neural tree.

served training data D [11]. By Bayes theorem, we have

P(D|A)P(A)
P(D)

where P(A) is the prior probability for the model, P(D|A)

is the likelihood of the model for the data, and P(D) is a
normalizing constant and computed as

P(A|D) =) @

P(D) = / P(D|A)P(A)dA. ®)

With this posterior probability, we can compute the expected
value of output for the unknown data x as follows

Blfa()] = / fA(X)P(4]D)dA, ©

where fa is the function implemented by a model A. In most
applications, however, we cannot easily evaluate the integra-
tion in Equation (6) and numerical calculation is impossi-
ble especially for the high dimensional function f4. This
value can be approximated by the Bayesian evolutionary al-
gorithms.

3.2 Deﬁning the Probability Distributions of Neural Trees

To find the fittest model by the BEAs, we first define the prob-
ability distributions of neural tree models for data. The pos-
terior probability of a neural tree A is defined as
P(A|D) « P(D|A)P(A) = P(D|w,k)P(w,k)
= P(D|w,k)P(w|k)P(k), (T)
where k is the number of nodes in the neural tree (including

bias terms) and w is the weight vector. Given the training data
as

D = {(xe, ye) }4, ®

the model A can describe many time series problems by the
following input-output mapping

Yo = fa(xc) +e 9

1452

where the noise € is assumed to be zero-mean Gaussian with
the standard deviation o. If we assume that data are indepen-
dent of each other, then the likelihood of the neural tree can
be expressed as follows

N 2
1 (yc - f(w k)(xc))
P = —_ ——_—— T
ow.k) =TT 77 exp ()
Y 2
|\~ 2 e = Fy(x0))
= - = .1
(=) oo (—) (10)
We define the following prior probability for weights of the
neural tree
k-1 2
1 'wj
P = Tl 7o (- %)
k-1
PIR"H

- () e () o

where the components of the weight vector are assumed to be
independent of each other and distributed according to zero-
mean Gaussian with the standard deviation 1. We also assume
that the number of nodes in the neural tree is distributed ac-
cording to following Poisson distribution

Ae=3 exp(—A)

Pk—-3) = k-3

(12)
where k = 3,4,... since the neural tree which consists of
one terminal node was not considered. Substituting Equation
(10), (11), and (12) into Equation (7), we obtain the following
‘posterior probability for the neural tree

P(A|D) P(D|w, k)P (w|k)P(k)

N
2 (e — f(w,k)(xc))2
= (J;_”U)Nexp (— =t Py)

) k—1
Cwri
() (B

3.3 Bayesian Evolution of Neural Trees

To search the structure and parameters of neural trees, we
maintain a population .4 of individuals A; at gth generation

A(g) = {A1,Aa, ..., Am}, (14)

where M is the population size. The initial population .A(0)
is created according to the prior probability of models, that
is, each number of nodes k; is given by the Poisson distri-
bution (12) and then w; is set by the Gaussian distribution
(11). In each generation g, the error E;(g) of neural trees are

evaluated as follows
N
CBi(9) =) (¥ — fai(xe)): (15)
c=1

Using this value, we can calculate the likelihood of each indi-
vidual in the population. Finally, the posterior probability of
each model is computed by Equation (13).

For constructing the next generation A(g + 1), candidate
model A; is first created from the parent model A; in the cur-
rent population. The candidate model is then accepted with
the following probability

. PayD)
a(A;, A;) = min {1’ P(AilD)} 1o

which is called acceptance probability. The candidate model
is always accepted when the posterior probability of the can-
didate model is higher than that of the parent; it is accepted
according to the ratio of two probabilities otherwise. If the
candidate model is accepted, A} is copied into the next gener-
ation. If candidate is rejected, then A; is copied into the next
generation.

Two major variation operators are applied to the parent
models for generating candidate models. First, a crossover
operator swaps two subtrees chosen at random from the par-
ent tree A; and another tree A;, (i # j) which is selected
randomly from the current population to create the candidate
model A;. Second, a mutation operator changes the type of
nonterminal nodes and the index of incoming units in the sub-
tree which is also chosen randomly from the parent tree. The
probabilities for applying these operators are p. and p,, re-
spectively. These mating steps are performed iteratively until
L individuals are produced.

Weights of a neural tree are adjusted through a stochas-
tic hill-climbing. All components of weight vector w are
changed just one time in random order with the following
expression

wi=wj+N(0,1) j=1,2,.,k~1, an
where k; is the number of nodes in tree A; and N(0,1) is a
normal distribution with mean O and variance 1. Each change
of the weight is also accepted by Equation (16).

The offspring population .A’(g) is obtained through the
above procedure and we finally generate the parent popula-
tion .A(g + 1) of the next generation by selecting the best M
individuals from A’(g).

3.4 Various Implementations of the BEAs
3.4.1 Individual-Based Exploitative BEA

The crossover operator cannot be applied since there is just
onec model (M = 1) in the individual-based exploitative
BEA. However, candidate model can be created by the in-
sert and delete operator. These operators limit the modifica-
tion of structure to one node for exploitative search, which

1453

Figure 2: Insert and delete operation (b4 = 3).

means that the candidate model is located close to the current
model in the search space. The Insert operator adds a ran-
dom terminal node to a randomly chosen nonterminal node
(Figure 2a). If the nonterminal node has b,,,,- branches, one
terminal node of the children nodes is changed into a non-
terminal node and the terminal node becomes the child node
of the new nonterminal node (Figure 2b). The delete opera-
tor removes a random terminal node from the children nodes
of randomly selected nonterminal node (Figure 2¢). If the
nonterminal node has only one child node, the nonterminal
is removed and the child node is linked to the parent node
of the nonterminal node (Figure 2d). The mutation operator
is applied to not a random subtree but a random node. For
example, II node can be changed into X node or z; can be
changed into z3.

3.4.2 Individual-Based Explorative BEA

There is just one individual like the individual-based exploita-
tive BEA but different operators are used. A randomly cho-
sen subtree whose depth does not exceed d, is replaced by the
randomly generated tree whose depth is d, or less (d, > 1).
Mutation can be applied to the random subtree whose depth
is also d, or less. This method can explore the search space
more widely from the current model than the exploitative
BEAs.

3.4.3 Parallelized Individual-Based BEA

This method maintains a large number of individuals. How-
ever, crossover is not used and thus the information is not
exchanged between the individuals. That is, each individual
is evolved independently and in parallel.

3.4.4 Population-Based BEAs

A population-based explorative BEA is the most general im-
plementation of BEAs, where the crossover and mutation op-
erators are applied to any subtree of a neural tree. This is in
contrast to the population-based exploitative BEA where vari-

08 g

0.2
L

ol ;
Lo

L 1 L L .
200 300 400 500 €00 700 800 900 1000
t

Figure 3: Laser data.

L
[] 100

ation operators are limited to be applied to subtree of depth
dg or lower.

4 Experimental Results

4.1 Laser data

This data set was generated by sampling every other data
point from far-infrared NHj3 laser data in a physics labora-
tory and have been used as a benchmark problem in the 1992
Santa Fe time series competition [8]. Following [15], the
even points from the original data set were used in our ex-
periments. The input attributes of all data set were linearly
rescaled into the interval [0,1] (Figure 3).

We used the first 500 data points for evolving the neural
tree models and the remaining 500 data points for testing the
predictive accuracy. Other experimental setup was as follows:
maximum branches of a nonterminal node was bz = 3,
which is the same as the input size, the standard deviation of
the noise was o = 0.05, the average number of nodes in a tree
was A = 30, and the maximum number of evaluations was
E,..> = 10%. The candidate population size was identical to
the parent population size (M = L) in all experiments. The
sum of insert probability and delete probability was the same
as the crossover probability (p. = p; + pa = 2/3).

Figures 4 and 5 show the change in mean squared error
(MSE) values of the best model for individual-based BEA
(iBEA) and population-based BEA (pBEA), respectively. Ta-
bles 1 and 2 summarize the normalized MSE (NMSE) value
of the best model for the test data set. All results are averaged
over ten runs for each method. Both iBEA and pBEA have a
better performance as the population size gets larger, but their
performance degrades for very large populations. This is be-
cause the weight searching time per individual is reduced as
the population size grows for the fixed evaluation time. Our
best performance for the test data set is also comparable to
the NMSE of 0.097 achieved by Angeline [2].

The exploitative method which uses the insert and delete
operations is better than the explorative methods in iBEAs
while the explorative method with unlimited crossover is bet-

1454

Population Size

Maber of Eveluations (X100000)

416 Population Size

Mrber of Evalustions (X1000003

Nsber of Evalustions (X200000)

Population S12e

Figure 4: Evolution of MSE values for exploitative (left) and explorative (middle and right) iBEAs on the laser data. In the

explorative methods, the depth d, of subtrees replaced by variation operators does not exceed 1 (middle) or 2 (right).

Population Size

Maber of Evaluations (X100000)

Nusber of Evaluations (X100000)

Populetion Size

Ysber of Evaluations (X100000)

Population Size

Figure 5: Evolution MSE values for exploitative (left and middle) and explorative (right) pBEAs on the laser data. In exploita-
tive methods, the depth d, of subtrees replaced by variation operators dose not exceed 1 (left) or 2 (middle).

Table 1: NMSE of individual-based BEASs for laser data.

exploitative explorative (dy = 1) explorative (d, = 2)
popsize Mean + Stdev Min Max Mean + Stdev Min Max Mean + Stdev Min Max
1 0.24647 +£0.07857 | 0.11482 | 0.43451 || 0.25695 +0.07135 | 0.12948 | 0.38385 || 0.27592 £0.10973 | 0.10044 | 0.42620
2 0.15672 4+ 0.04153 | 0.10917 | 0.22679 0.23722 £ 0.08431 | 0.10811 | 0.40822 0.20650 + 0.07256 | 0.11753 | 0.30024
4 0.13409 +0.03942 | 0.10703 | 0.24168 || 0.17196 & 0.03317 | 0.13325 | 0.25252 || 0.16807 & 0.05415 | 0.11706 | 0.25733
8 0.12962 + 0.02663 | 0.01473 | 0.19283 0.16436 £ 0.05175 | 0.11462 | 0.26635 0.13516 £ 0.02163 | 0.10900 | 0.17012
16 0.11929 £ 0.00700 | 0.10350 | 0.13050 || 0.13261 £+ 0.02746 | 0.11585 | 0.21286 || 0.13454 4+ 0.01414 | 0.11242 | 0.16075
32 0.13449 + 0.02030 | 0.11634 | 0.17976 0.13403 £ 0.01854 | 0.10877 | 0.16529 0.12831 £0.01735 | 0.11293 | 0.17258
64 0.12505 +0.00882 | 0.11571 | 0.14449 0.14056 £ 0.01785 | 0.11889 | 0.16302 0.14739 £ 0.01865 | 0.11937 | 0.18928
128 0.12890 + 0.00833 | 0.11394 | 0.14143 0.12918 £ 0.01102 | 0.11347 | 0.15495 0.12965 + 0.01142 | 0.11580 | 0.15130
256 0.13487 + 0.01546 | 0.11746 | 0.16799 0.15044 £ 0.02120 | 0.12176 | 0.19125 0.14221 + 0.01401 | 0.12420 | 0.17256
Table 2: NMSE of population-based BEAs for laser data.
exploitative (d, = 1) exploitative (d, = 2) explorative
popsize Mean + Stdev Min Max Mean =+ Stdev Min Max Mean + Stdev Min Max
2 0.18987 £ 0.06524 | 0.11207 | 0.29105 |[0.18965 + 0.07245 | 0.10958 | 0.32761 || 0.22444 £+ 0.05837 | 0.10982 | 0.33205
4 0.13425 3+ 0.02700 | 0.10731 | 0.19897 0.12047 £ 0.01171 | 0.10577 | 0.14484 0.14834 £ 0.05560 | 0.10784 | 0.26261
8 0.12222 +0.01154 | 0.10410 | 0.14444 0.11905 + 0.01232 | 0.10627 | 0.14173 0.11850 4+ 0.00692 | 0.11074 | 0.13449
16 0.12705 £0.01736 | 0.10698 | 0.16315 || 0.11661 4 0.01020 | 0.10437 | 0.14099 || 0.12806 +0.01701 | 0.11175 | 0.16837
32 0.12834 £ 0.01122 | 0.11050 | 0.15154 0.12824 £+ 0.00980 | 0.11212 | 0.14778 0.12358 + 0.00997 | 0.11005 | 0.14293
64 0.12751 £0.01434 | 0.10964 | 0.16282 |[0.12825+0.01115 | 0.11048 | 0.14840 || 0.12533 4 0.00883 | 0.10929 | 0.13947
128 0.13843 + 0.01687 | 0.11787 | 0.17168 0.12973 £ 0.01097 | 0.11192 | 0.15195 0.13218 +0.00811 | 0.12347 | 0.14827
256 0.13905 £+ 0.01025 | 0.12357 | 0.15887 0.13687 £+ 0.01082 | 0.12338 | 0.16160 0.13969 +0.01719 | 0.11829 | 0.18385

1455

06

x()

04

02

Figure 6: Sunspot data.

ter in pBEAs. Compared with iBEAs, pBEAs find better so-
lution more efficiently, although there is little difference in
the small population. This implies that the subtrees obtained
from other individuals by crossover are more useful than the
randomly generated subtrees.

4.2 Sunspot data

This data represents the yearly sunspot numbers from 1700 to
1998! (Figure 6). In our experiments, the period from 1700
to 1920 was used as the training set (221 data) and the period
from 1921 to 1998 as the test set (78 data). Experimental
setup is same as that of the sunspot data except for b,,,, = 4
and A = 40.

Figure 7 and 8 also show the change in MSE values of
the best model. The results which was obtained in the same
way as the laser data were shown in Table 3 and 4. The MSE
values decrease fastly as the population grow up but many
individuals slow down this decreasing rate like in the laser
data.

Though the difference between each methods of iBEAs is
not clear, the explorative methods is a little faster than the
exploitative one. In the pBEAsS, the explorative methods with
unlimited operations is also more robust. Unlike the laser
data, however, the pBEAs does not outperform the iBEASs and
exploitative methods of pBEASs are worse than the iBEAs.
From this result, we can deduce that the rough models for the
sunspot data is found more easily than for the laser data.

4.3 Analysis of the effects by the prior

It is difficult to add the prior knowledge about the model ex-
plicitly in general evolutionary algorithms. But it is possi-
ble to specify this knowledge through the prior probability
in BEAs thus the local search can be done more effectively.
Of course, general evolutionary algorithms are able to search
locally by using hill-climbing for weights and elitist strat-
egy for the structure where the best individual is always re-

!'This data is available from the Sunspot Index Data Center in Belgium.
http://www.astro.oma.be/SIDC/

tained in the next generation. However it tends to increase the
complexity of models as the evolution goes by so that mod-
els are overfitted to the training data. The prior probability
prevents this misfortune by controlling the model complex-
ity' (for more formal description, see the section 3 in [16]).
Figure 9 (left, middle) and 10 (left, middle) show the com-
plexities of the best model in terms of the number of nodes
and the squared sum of weight values. Most neural trees have
similar complexity which is smaller than the prior complexity
A

In general, we have no idea about the optimal models for a
given problem. In this case, BEAs are especially useful since
they are relatively robust with respect to prior probability. To
demonstrate this, we selected different values for A. The ob-
tained NMSE values for the test data are shown in Figures 9
(right) and 10 (right). The whole results are similar except
for pBEA starting with very small trees. Due to the lack of
the diversity in the population, in this case, the model space
cannot be explored well by the crossover.

5 Conclusions

In this paper, we presented Bayesian evolutionary algorithms
which do Bayesian inference through evolutionary computa-
tion for evolving neural tree models. The prior probability
and likelihood for the neural tree models were defined and
Bayes theorem was used to estimate the posterior probabili-
ties of individuals.

The performance of BEAs is affected by the population
size and the type of variation operators. We compared the
evolution speed and predictive accuracy of different BEA
methods on two scientific times series prediction problems.
It turned out that multiple individuals (i.e. pBEAS or paral-
lelized iBEAS), contrary to conventional MCMC methods, is
of benefit to searching the solution. Furthermore, population-
based BEAs with unlimited crossover generally find good
models more efficiently.

BEAs allow background knowledge about the given data
to be incorporated in the procedure thus the local search can
be done more effectively without overfitting. Our experimen-
tal results show that BEAs are relatively robust with respect
to prior specification.

Acknowledgements

This research was supported in part by the Korea Ministry of
Science and Technology through KISTEP under grant BR-2-
1-G-06 and by the BK21-IT Program.

Bibliography

[1] Andrieu, C., de Freitas, N., and Doucet, A., (2000) “Ro-
bust full Bayesian methods for neural networks,” Ad-
vances in Neural Information Processing Systems, vol.
12, pp. 379-385, MIT Press.

1456

Population Sizo

Maber of Evaluations (X100000>

Maber of Evalustions (X100000)

Population Sizs

Neber of Evaluations ¢X100000)

Populatian Sizs

Figure 7: Evolution of MSE values for exploitative (left) and explorative (middle and right) iBEAs on the sunspot data. In the

explorative methods, the depth d, of subtrees replaced by variation operators does not exceed 1 (middle) or 2 (right).

Population Size

Masber of Evalustiom (X100000)

°»»;¢=ug§m

~
o
-
-
”
“
.

Mmber of Evaluations (X100000)

Population Size

Maber of Evaluations ¢(X100000)

Population Size

Figure 8: Evolution of MSE values for exploitative (left and middle) and explorative (right) pBEAs on the sunspot data. In the
exploitative methods, the depth d, of subtrees replaced by variation operators dose not exceed 1 (left) or 2 (middie).

Table 3: NMSE of individual-based BEASs for sunspot data.

exploitative

explorative (ds = 1)

explorative (dg = 2)

popsize Mean = Stdev Min Max Mean =+ Stdev Min Max Mean + Stdev Min Max
1 0.30165 + 0.09516 | 0.15006 | 0.37014 || 0.32533 +:0.10336 | 0.14867 | 0.47269 0.31768 + 0.09745 | 0.18348 | 0.44547
2 0.24992 4-0.09359 | 0.15609 | 0.36935 || 0.26006 + 0.11097 | 0.15031 | 0.46229 (| 0.26224 +0.09643 | 0.14336 | 0.41948
4 0.18334 +0.02899 | 0.15351 | 0.24187 || 0.19048 3 C.03291 | 0.15423 | 0.25294 || 0.20234 £0.06141 | 0.14375 | 0.36553
8 0.18191 £ 0.03722 | 0.13776 | 0.23455 0.16932 & 0.02371 | 0.13794 | 0.20983 0.18664 + 0.02861 | 0.14509 | 0.23636
16 0.17858 +0.01943 | 0.15754 | 0.21690 (| 0.18476 £ 0.01734 | 0.15589 | 0.20742 {| 0.17371 £0.01968 | 0.15466 | 0.20936
32 0.19209 £ 0.03069 | 0.14944 | 0.24328 0.18258 + 0.02707 | 0.14845 | 0.25382 0.17538 + 0.01995 | 0.14864 | 0.20784
64 0.18074 £ 0.01306 | 0.16267 | 0.21422 || 0.18550 £ 0.02018 | 0.15848 | 0.22998 0.17151 £ 0.02013 | 0.12772 | 0.20491
128 0.17739 £ 0.01058 | 0.16293 | 0.19650 || 0.19063 1 0.01899 | 0.15885 | 0.23424 | 0.18633 £ 0.02897 | 0.14907 | 0.22884
256 0.18481 + 0.02570 | 0.12916 | 0.22363 || 0.20776 + 0.03014 | 0.17002 | 0.25112 || 0.20531 £0.03068 | 0.15308 | 0.25358
Table 4: NMSE of population-based BEAs for sunspot data.
exploitative (dy = 1) exploitative (ds = 2) explorative
popsize Mean + Stdev Min Max Mean =+ Stdev Min Max Mean + Stdev Min Max
2 0.19125 £ 0.06671 | 0.14707 | 0.37528 0.21828 + 0.07419 | 0.16396 | 0.36644 0.22825 + 0.09014 | 0.15389 | 0.37757
4 0.19586 1-0.05628 | 0.15451 | 0.35910 |[0.17564 4 0.02319 | 0.14999 | 0.21917 || 0.23420 +0.09112 | 0.14284 | 0.37314
8 0.20076 +0.03009 | 0.15506 | 0.23563 0.17760 £ 0.01859 | 0.15997 | 0.22859 0.17886 £ 0.01209 | 0.16371 | 0.19822
16 0.16718 +0.01455 | 0.15228 | 0.20197 || 0.20156 £+ 0.02270 | 0.17604 | 0.23938 || 0.17493 +0.01780 | 0.15492 | 0.21391
32 0.18565 + 0.03312 | 0.14785 | 0.24501 0.19871 £ 0.01965 | 0.15531 | 0.2249%4 0.17991 + 0.01664 | 0.15906 | 0.20886
64 0.19625 1-0.02389 | 0.15824 | 0.24942 || 0.18090 £ 0.02259 | 0.15453 | 0.22347 || 0.19443 £ 0.03663 | 0.15429 | 0.25653
128 0.17864 + 0.02378 | 0.15206 | 0.23116 || 0.20515 £ 0.03704 | 0.15522 | 0.26289 0.20256 + 0.03258 | 0.17297 | 0.25408
256 0.19698 +0.02732 | 0.14884 | 0.25890 || 0.20253 £ 0.03656 | 0.15446 | 0.26733 0.19996 + 0.03751 | 0.15978 | 0.28250

1457

Bouared Bum of Wegts.

Poguistien Sze

: .___m m

Figure 9: Effects on the number of nodes (left), weights (middle), and NMSE (right) by the prior for the laser data.

Squared Bum of Weghts.

e —

Popuiwion Sre

Popuiation Sae

1l

Figure 10: Effects on the number of nodes (left), weights (middle), and NMSE (right) by the prior for the sunspot data.

(2]

(31

(4]

[5]

(6]

(71

(8]

(91

Angeline, P.J., (1998) “Evolving predictors for chaotic
time series,” Proceedings of SPIE: Applications and
Science of Computational Intelligence, vol. 3390, pp.
170-180.

Box, G.E.P, Jenkins, G.M., and Reinsel, G.C., (1994)
Time Series Analysis, 3rd Ed., Prentice-Hall.

Chen, S.-H. and Lu, C.-F,, (1999) “Would evolutionary
computation help in designs of ANNS in forecasting for-
eign exchange rates,” Proceedings of the 1999 Congress
on Evolutionary Computation, vol. 1, pp. 267-274.

Gilks, W.R., Richardson, S., and Spiegelhalter, D.J.,
(1996) Markov chain Monte Carlo in Practice, Chap-
man & Hall.

Green, PJ., (1995) “Reversible jump Markov chain
Monte Carlo computation and Bayesian model determi-
nation,” Biometrika, vol. 82, no. 4, pp. 711-732.

Harrald, P.G. and Kamstar, M., (1997) “Evolving arti-
ficial neural networks to combine financial forecasts,”
IEEE Transactions on Evolutionary Computation, vol.
1, no. 1, pp. 40-52.

Hiibner, H., Weiss, C.O., Abraham, N.B., and Tang, D.,
(1993) “Lorenz-like chaos in NH;3-FIR laser,” Time se-
ries prediction: Forecasting the future and understand-
ing the past, pp. 73-104, Addison-Wesley.

Kreutz, M., Reimetz, A.M., Sendhoff, B., Weihs, C.,
and von Geelen, W., (1998) “Optimisation of density es-
timation models with evolutionary algorithms,” Parallel

(10]

[11]

[12]

[13]

(14]

(15]

[16]

1458

Problem Solving from Nature, Lecture Notes in Com-
puter Science 1498, pp. 998-1007, Springer.

Pole, A., West, M., and Harrison, J., (1994) Applied
Bayesian Forecasting and Time Series Analysis, Chap-
man & Hall.

Press, S.J., (1989) Bayesian Statistics: Principles, Mod-
els, and Applications, Whiley.

Richardson, S. and Green, P.J., (1997) “On Bayesian
analysis of mixtures with an unknown number of com-
ponents (with discussion),” Journal of Royal Statistics
Society B, vol. 59, no. 4, pp. 731-792.

Rios Insua, D. and Miiller, P., (1998) “Feedforward neu-
ral networks for nonparametric regression,” Practical
Nonparametric and Semiparametric Bayesian Statis-
tics, Lecture Notes in Statistics 133, pp. 181-194,
Springer.

Weigend, A.S. and Gershenfeld, N.A., (1994) Time Se-
ries Prediction: Forecasting the Future and Under-
standing the Past, Addison-Wesley.

Zhang, B.-T., Ohm, P, and Miihlenbein, H., (1997)
“Evolutionary Induction of Sparse Neural Trees,” Evo-
lutionary Computation, vol. 5, no. 2, pp. 213-236.

Zhang, B.-T., (1999) “A Bayesian Framework for
Evolutionary Computation,” Proceedings of the 1999
Congress on Evolutionary Computation, vol. 1, pp. 722-
728.

