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Abstract- Bayesian evolutionary algorithms (BEAs) are
a probabilistic model of evolutionary computation for
learning and optimization. Starting from a population of
individuals drawn from a prior distribution, a Bayesian
evolutionary algorithm iteratively generates a new pop-
ulation by estimating the posterior fitness distribution of
parent individuals and then sampling from the distribu-
tion offspring individuals by variation and selection op-
erators. Due to the non-homogeneity of their Markov
chains, the convergence properties of the full BEAs are
difficult to analyze. However, recent developments in
Markov chain analysis for dynamic Monte Carlo meth-
ods provide a useful tool for studying asymptotic behav-
iors of adaptive Markov chain Monte Carlo methods in-
cluding evolutionary algorithms. We apply these results
to investigate the convergence properties of Bayesian evo-
lutionary algorithms with incremental data growth. We
study the case of BEAs that generate single chains or have
populations of size one. It is shown that under regularity
conditions the incremental BEA asymptotically converges
to a maximum a posteriori (MAP) estimate which is con-
centrated around the maximum likelihood estimate. This
result relies on the observation that increasing the num-
ber of data items has an equivalent effect of reducing the
temperature in simulated annealing,

1 Introduction

In the Bayesian approach to evolutionary computation, the
fitness of the individuals is defined as a probability function
[21, 23]. Here, evolutionary computation is formulated as a
probabilistic sampling process of finding an individual with
the maximum a posteriori probability (MAP). To find the
MAP individual, a Bayesian evolutionary algorithm (BEA)
starts from a population of individuals drawn from the prior
distribution, and iteratively generates a new population by es-
timating the posterior fitness distribution of parent individuals
and then sampling from the distribution offspring individuals
using variation and selection operators.

In previous work, we have shown the usefulness of the
Bayesian formulation as a unified framework for the de-
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velopment and analysis of various evolutionary algorithms
[21, 22]. Empirical studies have shown that BEAs achicved
significant speed-up when combined with complexity penalty
methods or incremental data subsampling methods.

The main objective of this paper is to study the stability
of Bayesian evolutionary algorithms. We are especially inter-
ested in the convergence properties of BEAs with incremen-
tal data growth since our previous experimental results have
demonstrated its practical importance in accelerating evolu-
tion speed. However, a theoretical analysis of full-fledged
BEAs seems practically impossible since the Markov chains
generated by them are non-homogeneous. In this paper, we
make some simplifying assumptions, such as restricting pop-
ulation size to one and only considering state spaces of fixed
dimensions. This allows, despite the non-homogeneity, for
application of theoretical results developed in dynamic Monte
Carlo methods, such as simulated annealing [1, 19], to the
Markov chain analysis of the Bayesian evolutionary algo-
rithms. Based on these results, this paper offers the conver-
gence properties of the Bayesian evolutionary algorithms. In
particular, we show that the incremental BEAs finds the pos-
terior mode as the number of generations goes to infinity. The
basic idea behind our argument is that increasing the data size
plays the role of decreasing the temperature in simulated an-
nealing. That is, our proof is based on the convergence results
in annealing techniques.

The paper is organized as follows. In Section 2, we sketch
the Bayesian framework for evolutionary computation. Sec-
tion 2 also presents the description of the canonical BEA and
approaches to its Markov chain analysis. Sections 3 shows
the convergence properties of simple BEAs, which are in
essence equivalent to Metropolis-Hastings algorithms. Sec-
tion 4 discusses the convergence results for simulated anneal-
ing which are used to see the convergence properties of an-
nealed BEAs. We show then the convergence of incremental
BEAs to the optimal solution, i.e., the maximum a posteriori
(MAP) estimate, by relying on the fact that as the number of
data items goes to infinity (or as the data items are observed
infinitely many times) the posterior mode converges to the



maximum likelihood. We conclude with some remarks on
the practical utility of the results.

2 Bayesian Evolutionary Computation

2.1 Principles

Bayesian evolutionary computation is a probabilistic model
of evolutionary computation [21, 23]. It starts from a pop-
ulation of individuals drawn from the prior distribution, and
iteratively generates a new population by estimating the pos-
terior fitness distribution of parent individuals and then sam-
pling from the distribution offspring individuals via variation
and selection operators. Explicit modeling of fitness distribu-
tions in terms of probabilities and the generational transition
by means of Bayes formula are two distinguishing features
of Bayesian evolutionary computation from most of existing
evolutionary algorithms.

More formally, let @ denote the parameter vector for the
model, let w(6) be the prior probability distribution for the
models (since 8 uniquely determines the model, we use the
terms ‘model’ and ‘model parameter’ interchangeably in this
paper) and f(D|8) the likelihood of the model for the data
D = {(x¢,yc),¢ = 1,..., N}. Then, using Bayes formula
the posterior probability w(6|D) of model € is given as

@) = 1DOTE) M

f(D)

where f(D) is a normalizing constant.
The aim is to choose a model pr4p that maximizes the
posterior probability (MAP):

Onmap = argmax w(0|D). 2)
9€©

The MAP model is then used to predict the output values y
for given input values x:

y = y(x;0pap). 3

Alternatively, the samples from the distribution #(6]D) can
be used to compute the posterior expectation of any function
h(8) as follows:

EROD] = [n@meas @
1 m
~ Ejé;hwt)’ )

where IE[-] denotes the expectation operator and m is the
number of individuals §* sampled from 7 (8| D).

Initially, the shape of the (prior) probability distribution of
individuals mo(8) is flat to reflect the fact that litde is known
at the outset. Evolution is considered as an iterative process
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of revising the posterior distribution of individuals =;(6;]D)
by combining the prior m;(6;) with the likelihood f(D|6;).
In each generation, Bayes theorem (1) is used to estimate the
posterior fitness of individuals from their prior fitness values.
The posterior distribution 7, (6, D) is then used to generate its
offspring.

We note in passing that the idea of using fitness dis-
tributions to make evolutionary computation more efficient
has been proposed by several authors (see, for example,
[3, 7, 13]), but none of them is based on the Bayesian induc-
tive principle. In addition, most of the estimation of distribu-
tion algorithms (EDAs) have been developed in the context of
function optimization using fixed-size string representations
(see [12] and references therein).

2.2 The Canonical Bayesian Evolutionary Algorithm

The canonical Bayesian evolutionary algorithm can be sum-
marized as Algorithm 2.1. In essence, the algorithm consists
of five steps: D (data), P (posterior), V (variation), S (selec-
tion), and R (revision). The three steps of R, D, and P involve
computation of prior, likelihood, and posterior probabilities,
respectively. The V and S steps realize the sampling from the
posterior distribution. Note that BEAs attempt in the P-step to
explicitly model the posterior fitness distribution of individ-
uals. Another feature of BEAs is the D-step which cares for
incremental growth of data sets. This naturally corresponds
to the Bayesian inductive learning principle.

More specifically, we define the fitness value of individ-
ual 6% as its posterior probability m:(6¢|D*) computed with
respect to the ¢th population:

f(D*|6})m:(6%)
Zo;eet f(Dt|0§)7fe(9§).

Assuming the exponential family for the likelihood function
and prior distribution (e.g., Gaussian distributions),

me(61|DY) =

)

f(D*16)

7 eo{~E(DI)/T} ()
E

(8} = Zicexp{—cw:)/m, ®

the fitness of individuals is written as
exp{—F(6}|D*)/T:}

3o exp{~F (8| D")/T;}
exp{—(E(D*|6%) + C(6%))/T:}

Yoscor xp{~(E(D!6}) + C(6%))/Ti}

m (65| D")

&)

where E(D|9%) and C(6%) are arbitrary component mea-
sures for evaluating raw fitness of individuals, and T; is the
temperature parameter for controlling the randomness of the



Algorithm 2.1 (Canonical BEA)

1. (Initialize) Generate ©° {62, ...,0%} from mo(6).
Initialize data size Ny and temperature Ty. Set gener-

ation count t + 0.

. (D-step) Generate (observe) Dt of size N,. Compute
likelihoods f(D*|6%) = exp{—E(D*|0%)/T;}.

. (P-step) Estimate posterior distribution m(6%|D*)
exp{—F;(6¢|D*)/T¢}. Set the best individual 6},,;.

. (V-step) Generate L variations ©' = {6,...,61} by
sampling from 74(9).

. (S-step) Select M individuals from ©' into ©*
{8411, ...,6%41 ) according to f(D*|65).

. (R-step) Revise prior distribution 74(6). Update temper-
ature Ty.

. (Loop) Sett + t + 1 and go to Step 2.

Figure 1: Procedure for the canonical Bayesian evolutionary
algorithm.

stochastic process. Note here that the posterior probability is
approximated by a fixed-size population ©¢ which is typically
a small subset of the entire model space ©: ©* C 0,]0t| «
|©}. The evolutionary inference step from generation ¢ to £+1
is then considered to induce a new fitness distribution 4.1 (6)
from ¢ (9) following the Bayes formula.

At each generation ¢ we keep the best individual 6%,
which is the individual with the maximum a posteriori (MAP)
probability with respect to ©y:

gltzest = argmaxm (glet) (10)
8
_ £(D"18})ms(6%)
- Y T D8 (67)
= 11

argmax f(D*|6%)m.(6%),
o

where 87 and 8% are elements of population ©%. A complete
run for ¢ generations of the Bayesian evolutionary algorithm
then chooses (in the context of MAP estimation) the best
among the generation-best models, i.e., Opeqt () such that

7t (Obest (£)| D*) (12)

k
max (63.5¢1D*),

where 6F,,, is the best solution at generation k and
7t (Obest ()| D*) is the tth estimation of 7(6pap|D?).

Note that the description of Algorithm 2.1 is intention-
ally abstract. Thus, for example, the V-steps can be imple-
mented in several ways, including mutation, crossover, or
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their combinations. Alternatively, the V-step can be made by
Metropolis-Hastings moves, i.e., proposing a new state by a
proposal function and accepting it with an acceptance func-
tion [11]. The S-step can also be realized using various se-
lection schemes, such as truncation selection and tournament
selection as well as proportional selection [2].

2.3 Markov Chain Analysis

The Bayesian evolutionary algorithm attempts to generate a
sequence of points that converge in an appropriate sense to the
MAP hypothesis (in the context of optimization). We want
to examine the convergence behavior of BEAs. That is, we
want 1o see if the Bayesian evolutionary algorithm finds the
optimal (MAP) estimate to an arbitrary precision, i.c.,

Jim P{| m4(Bbest (t)|D*) — m(0mar|D) | <€} =1, (13)

for an arbitrarily small positive constant €. Especially, we are
interested in the convergence behaviors of incremental BEAs
compared with non-incremental BEAs. Previous experimen-
tal results show an improvement in evolution speed up to an
order of magnitude, but no theoretical results exists yet with
respect to the asymptotic behavior of incremental BEAs,

Previous results on theories of evolutionary computation,
for example [5, 17, 8], show that Markov chain analysis can
be used to characterize convergence properties under some
regularity conditions, such as where the Markov chains are
(time) homogeneous or for some class of problems for which
the search space has a well-defined geometry. Note, how-
ever, that in Algorithm 2.1 the samples 8} are proposed from
a distribution m, (6%) which changes as generation ¢ goes on.
Thus, the sequence (8¢) can be seen as a non-homogeneous
Markov chain. The study of these chains is quite compli-
cated given their ever-changing transition kernel. However,
some recent work demonstrates that annealing techniques
can be used to show the asymptotic convergence of non-
homogeneous Markov chains, see for example [19, 15] and
references therein.

Based on these results, the following two sections offer
the convergence properties of the Bayesian evolutionary al-
gorithms. In particular, we show that the incremental BEAs
finds the posterior mode as the number of generations goes to
infinity. The basic idea behind our argument is that increasing
the data size plays the role of decreasing the temperature in
simulated annealing. Thus, our proof is based on the conver-
gence results in annealing techniques. We proceed as follows:

o First, we show that the BEA can be reduced to a Markov
chain Monte Carlo method for which geometric conver-
gence results are well known. This assures the conver-
gence of the simple BEA to a target distribution for a
fixed temperature.



e Second, we show that in case of fixed data set D with
temperature scheduling (annealed BEA), the BEA algo-
rithm has a convergence property equivalent to that of
simulated annealing.

e Third, we show that the incremental data growth plays
the role of a cooling schedule in simulated annealing.
This allows us to arrive at the convergence results that
are equivalent to the prior feedback method [14].

In effect, we show that the incremental BEAs have the same
asymptotic convergence property as that of nonincremental
versions. An advantage of the incremental approach is the
speed-up effect, as demonstrated in previous work [22].

3 Convergence Properties of Simple BEAs

We consider the simple case where D* = D, T, = T, and
M = 1. We also assume the parameter vectors have a fixed
dimension. The algorithm consists of repetition of V- and
S-steps until convergence while the V-step proposes a move
from the (fixed) prior distribution (#) and the S-step accepts
it with probability min {;ﬁ(.g_,l% 1}. This leads to the fol-
lowing Metropolis-Hastings (MH) version of the BEA that
has a single chain.

Algorithm 3.1 (Single Chain BEA)

1. (Initiglize) Generate 6° from wo(6). Set t + 0.
2. (V-step) Generate @' from the prior distribution 7 (8).
3. (S-step) Estimate its likelihood f(D|8') and take

. K(D|¢")
g+l ¢ wp. min { fDlees 1} 14
6t  otherwise.

4. (Loop) Sett + t + 1 and go to Step 2.

The convergence results for the generic Metropolis-
Hastings algorithm naturally apply in this case. Robert and
Casella [15] provide an excellent introduction to Markov
chain Monte Carlo (MCMC) methods, including Metropolis-
Hastings. The theory of MCMC says that repeating V- and
S-steps, the procedure produces (afier it is iterated until con-
vergence) a stationary sequence whose marginal distribution
is the required posterior w(8{|D). That is, we have the fol-
lowing (rather general) convergence result which is also true
for single chain BEAs.

Theorem 3.1 (Ergodicity) Suppose that the MH Markov
chain (0*) is f-irreducible.
(i) If h € L'(f), then

1 T
Jim T;h(at): / WOSO® ae f. (19
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(ii) If, in addition, (6*) is aperiodic, then
. n B _
Jim (| [ K6, )0(8)  fllzv =0

for every initial distribution pu, where K™(0,-) denotes the
kernel for n transitions and ||-|| v is the total variation norm.

The property of irreducibility follows from sufficient con-
ditions such as positivity of the conditional density q (in our
case 7 (8):

q(@'|6) >0 forevery (0,8')€ & xE,

(16)

amn

since it then follows that every set of £ with positive Lebesque
measure can be reached in a single step. Though, this condi-
tion may seem restrictive, it is often satisfied in practice. For
the case of the symmetric proposal function, e.g. (|6’ — 6%),
Roberts and Tweedie [16] give a somewhat less restrictive
condition for irreducibility and aperiodicity.

Lemma 3.1 Assume f is bounded and positive on every com-
pact set of its support E. If there exist positive numbers € and
& such that

q(@'16) > if 16'-0] <9, (18)

then the MH Markov chain (6*) is f-irreducible and aperi-
odic.

Following Lemma 3.1, if g is positive in a neighborhood
of 0, the random walk MH chain (%) with proposal function
g(]¢' — 6%]) is f-irreducible and aperiodic, therefore ergodic.
The most common distributions in this setup are the uniform
distributions on spheres centered at the origin or standard dis-
tributions like the normal and the Student’s ¢ distributions.

Despite its simplicity and natural features, the random
walk MH algorithm does not enjoy uniform ergodicity prop-
erties. Mengersen and Tweedie [11] have shown that in the
case where supp f = IR, this algorithm cannot produce a uni-
form ergodic Markov chain on IR.

Although uniform ergodicity cannot be obtained with ran-
dom walk MH algorithms, it is possible to derive necessary
and sufficient conditions for geometric ergodicity. Mengersen
and Tweedie [11] have proposed a condition based on the log-
concavity of f in the tails; that is, if there exista > 0 and z
such that

log f(6) —log f(¢") > a6’ — 6]

ford <6< —6,0r6, <0<8. _

Theorem 3.2 (Geometric Ergodicity) Consider a symmet-
ric density f which is log-concave with associated constant
a in (19) for |0| large enough. If the density g is positive and
symmetric, the chain (0%) of the random walk MH algorithm
is geometrically ergodic. If f is not symmetiric, a sufficient
condition for geometric ergodicity is that g(t) be bounded by
bexp{—alt|} for a sufficiently large constant b.

19)



4 Convergence Properties of Incremental BEAs

We first see the convergence properties of simulated anneal-
ing version of the BEAs. Then, we show that the data size
parameter plays the role of the cooling temperature. This re-
lates incremental BEASs to simulated annealing and the same
arguments of convergence for the latter can be applied to the
former.

4.1 Convergence of Annealed BEAs

Let the target distribution for the Bayesian evolutionary algo-
rithm be given as the exponential form

m(@1D) = 5-exp{-F@D)/T} (20)
= = exp{-(B(DI#") + CON/T}eD

where F(6%|D) is the raw fimess (called “energy” in statisti-
cal physics) and T; is a temperature parameter that controls
the randomness between F' and w;. We assume that the data
set be fixed to Dt = D with size Ny = N for all £. Then,
modifying the temperature T; at each generation, we obtain
an annealed version of the BEA algorithm as follows:
Algorithm 4.1 (Annealed BEA)

1. (Initialize) Generate 6° from mo(8). Set t + 0.
2. (V-step) Generate &' from the prior distribution w(6).

3. (S-step) Estimate its energy E(D|@") and take

0t+1 —_ {

4. (R-step) Update T; to Ty 11.

_ E(D|¢")—E(D|6*)

t

¢ wp. min {exp(

6t otherwise.

5. (Loop) Sett «+ t+ 1 and go to Step 2.

Note that sampling from the posterior distribution
n¢(8*| D) (i.e. each step of optimization) is performed in two
steps. First, a new state @’ is generated from the prior dis-
tribution 7(@) which is usually taken as uniform. Then, the
energy difference between the new and old states,

AF = AE = E(D|¢’) - E(D|¢") 22)

is measured. Here, AF is equal to AE since C(6) in (21)
is uniform and thus this term makes no contribution to the
energy differenc. If the energy of the new state is lower than
that of the new state, the new state @' is accepted. Otherwise,
the new state is accepted with probability

(23)

)1
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In Algorithm 4.1 the acceptance probability is a function
of the temperature parameter which is scheduled according to
the so-called “cooling schedule.” Usually a logarithmic rate

Ty

= fogt @9

T;
is used as a cooling schedule, where Tp is a constant. Also
adopted is a geometric rate

Tt = atTo (0 <a< 1) (25)
with the constant a calibrated at the beginning of the algo-
rithm so that the acceptance rate is high enough.

Given a temperature parameter 77 > 0, a sample
(671,0™2,...) is generated from the posterior distribution
(21). As T; decreases toward 0, the values simulated from
this distribution become concentrated in a narrower and nar-
rower neighborhood of the local minima of F' [19]. This is
the basic idea behind the simulated annealing methods. The
change of scale, called temperature, allows for faster moves
on the surface of the function F'. Therefore, rescaling par-
tially avoids the trapping attraction of local minima.

The annealed BEA is in fact a Metropolis al-
gorithm, which simulates the density proportional to
exp{—F(6%|D)/T;}, as the limiting distribution of the chain
(9°,6%,...). The stochastic acceptance with temperature
scheduling allows the algorithm to escape a local maximum
of F', with a probability which depends on the choice of the
scale T'.

Note that the Markov chain (6%) generated by simulated
annealing (including the annealed BEA) is no longer homo-
geneous since the acceptance function varies with time. How-
ever, there still exist convergence results in the case of finite
spaces [10, 19]. For example, Hajek’s theorem [10] gives
a necessary and sufficient condition, on the rate of decrease
of the temperature, so that the simulated annealing algorithm
converges to the set of global maxima. An extension of these
methods to the general (continuous) case has also been pro-
posed by Duflo [4].

4.2 Convergence of Incremental BEAs

We start with the observation that the following result pro-
vides a basis for the solution to a maximization problem.

Theorem 4.1 (Duflo, 1996; Robert and Casella, 1999) Con-
sider h a real-valued function defined on a closed and
bounded set, ©, of RP. If there exists a unique solution 6*

satisfying

g = argxgxeigch(O), (26)
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provided h is continuous at 6*.

This result shows the convergence of exp{h(8)/T} to the
uniform distribution on the set of global maxima of h. A
sketch of the proof based on the Laplace approximation of
both integrals can be found in [4].

A direct corollary to this theorem then justifies the recur-
sive integration or prior feedback method [14] which results
in a Bayesian approach to maximizing the log-likelihood,
£(0|z) = log f(z]9).

Corollary 4.1 Let w be a positive density on ©. If there exists
a unique maximum likelihood estimator 8*, it satisfies

- Jo6MODn(6)ds
Anoo [o MO T(0)dE

6. (28)

This result shows that the maximum likelihood estimator
can be written as a limit of Bayes estimators associated with
an arbitrary distribution 7 and with virtual observations cor-
responding to the Ath power of the likelihood, exp{A¢(8|z)}.
For an integer A,

Joo 66XO12) (9

;r(z) = fe e“(‘”“)w(e)d&

(29

is simply the Bayes estimator associated with the prior dis-

tribution 7 and a corresponding sample which consists of A -

replications of the initial sample z.

In Section 3, we have shown that the simple BEA has the
ergodicity property so that each integration (29) can be ap-
proximated by ergodic averaging. It remains to show that
the BEA with incremental data growth implements the re-
cursive integration method (28). We consider the following
algorithm.

Algorithm 4.2 (Incremental BEA)

1. (Initialize) Generate 6° from my(8). Initialize Ay = Np.
Sett + 0.

2. (D-step) Generate (observe) Dt of size Ay = Ny.

3. ((P,V, S, R)-steps) Compute Bayes estimates 6%, (D*) by
repeating (P, V, S, R)-steps until convergence.

4. (Loop) Increase Ny. Sett + t + 1 and go to Step 2.

Note that in this version of BEA, no temperature scheduling is
applied. The only step for revision is related with the growth
of the data size \;, i.e. we have

At > A1 for £=1,2,... 30)
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We assume, as in incremental data growth, that the data items
are retained in D* once they are selected. Thus, at generation
t, the data chosen at generation k (k < ) are observed t—k+1
times which goes to infinity as ¢ — oo. This means that all
the data items are observed infinitely many times as £ goes to
infinity.

To show that the likelihood for A; data items contributes
the A;-th power of the unit values, note that the data set D? at

generation ¢ consists of A; data items 1:;-, ie.

Dt ={z,j=1,.., A} (€3))

If we assume that xj- are independent and identically dis-

tributed, then the likelihood function f can be represented

as a product of likelihoods for each data item:

At
fotey = ] f=hieh (32)

j=1

Expressing this in exponential form with £(8|z) denoting the
log-likelihood of 8, we get

A
f(D46%) o« ] exp{e(6%I25)} (33)
= exp{\L(6]2)} (34)

where notation £(8|z) is used to denote the unit likelihood of
a data item. Note that increasing A has the effect of replicat-
ing each data item ), times.

It is interesting to observe the relationship between the

data size and the temperature:
exp{Al(f|z)} o exp{l(6]z)/T:} 35)
1
/\t X -T:. (36)

Recalling the annealing effect of T} from the previous section,
we see that increasing the number of data items is equivalent
to decreasing the temperature. The effect is also similar; the
more the data items the BEA observes, the more determinis-
tic becomes its likelihood function. The intuition behind the
incremental approach is that as the size of the sample goes
to infinity, the influence of the prior distribution vanishes and
the distribution associated with exp{\(8|z)} (@) gets more
and more concentrated around the global maxima of £(8|z)
when X\ increases [18]. This implies that as the number of
data items goes to infinity, the incremental BEA converges to
the maximum a posteriori distribution which is concentrated
around the maximum likelihood estimate.

5 Concluding Remarks

We applied the asymptotic results from Markov chain Monte
Carlo to show that, as the number of data items observed goes



to infinity, the Bayesian evolutionary algorithm (BEA) with
incremental data growth converges t0 a maximum a poste-
riori estimate (which is concentrated around the maximum
likelihood estimate). The derivation is based on the observa-
tion that increasing the data size has the effect that is similar
to reducing the temperature in simulated annealing. This re-
sult is interesting in that convergence is achieved even though
the Markov chain generated by the incremental BEA is non-
homogeneous.

1t should be noted that this is an asymptotic result. We
also have assumed that one set of data items are observed re-
peatedly until their convergence before the next data set is
presented. However, simulation studies reported in [21, 22]
demonstrate that presentations of data items repeatedly but a
finite number of times also exhibit convergence behaviors for
the problems addressed. Other empirical findings include that
the incremental evolutionary algorithms accelerate the con-
vergence of evolutionary computation since they tend to use
subsampled portion of the entire data to evaluate the fitness
values of individuals.

The increased rate of convergence in incremental BEAs
is interesting from the “no free lunch (NFL)” theorem [20]:
all optimizers have identical performance for any criterion in
average. According to the NFL results, the speedup effect
in particular runs of incremental BEAs is attributed to the
accelerated matching of the distribution model to the actual
distribution for the problem at hand. This implies that the
sampling mechanism employed in the incremental BEAs has
the effect of increasing the speed with which points are se-
lected for evaluation to find the global structure of the partic-
ular search space.

Finally, it should be mentioned that most of the con-
vergence properties we discussed in this paper have been
concerned with the case of single Markov chains. Conver-
gence behaviors of the Bayesian evolutionary algorithms un-
der more general settings are still to be studied.
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