Bayesian Evolutionary Algorithms for Continuous Function Optimization

Soo-Yong Shin
Artificial Intelligence Lab (SCAT)
School of Computer Science and Engineering
Seoul National University
Seoul 151-742, Korea.
syshin@scai.snu.ac.kr

Abstract- Recently many researchers have studied the es-
timation of distribution algorithms (EDAs) as an opti-
mization method. While most EDAs focus on solving com-
binatorial optimization problems, only a few algorithms
have been proposed for continuous function optimization.
In previous work, we developed a Bayesian evolutionary
algorithm (BEA) for combinatorial optimization problem
using a probabilistic graphical model known as Helmholtz
machine. - Since BEA is a general framework for evo-
lutionary computation based on the Bayesian inductive
principle, we improved BEA for continuous function op-
timization problems. By the nature of neural network
and availability of the wake-sleep learning algorithm,
Helmholtz machine can capture the continuous distribu-
tion with a small modification. The proposed method has
been applied to a suite of benchmark functions and com-
pared with a real-coded genetic algorithm and previous
experimental results.

1 Introduction

Recently, a number of algorithms known as the estimation of
distribution algorithms (EDA) have been proposed that ex-
plicitly model the population of good solutions and use the
constructed model to guide further search[6, 13]. Instead of
using local information through crossover or mutation of in-
dividuals, they use global information contained in the popu-
lation. From the population, statistics of the hidden structure
are derived and used for generating new individuals.

While most of the studies focus on building the model for
discrete space, a few algorithms have been proposed for con-
tinuous spaces[14, 15, 17, 16, 7, 2]. By the way, most of
continuous space approaches consider the joint density func-
tion as a product of unidimensional and independent normal
densities, so they suffered from the lack of abilities of their
model. ’

In this paper, we present a Bayesian evolutionary algo-
rithm (BEA) that estimates the continuous distribution by a
graphical learning model known as Helmholtz machine. In
the previous work, we focused on evolutionary optimization
and developed the Bayesian evolutionary algorithm for com-
binatorial optimization problems[23], where Helmholtz ma-
chine was used as a tool to capture the distribution of a given
data set. A Bayesian evolutionary algorithm is a probabilistic

0-7803-6657-3/01/$10.00 ©2001 IEEE 508

Byoung-Tak Zhang
Artificial Intelligence Lab (SCAI)
School of Computer Science and Engineering
Seoul National University
Seoul 151-742, Korea.
btzhang @cse.snu.ac.kr

model of evolutionary computation that is based on Bayesian
inference[20, 22]. In BEA, evolutionary computation is for-
mulated as a probabilistic process of finding an individual
with maximum a posteriori probability (MAP). Though orig-
inally developed as a method for evolutionary learning, BEA
can be shown to be applicable to evolutionary optimization
as well. Since the BEA is a general framework, it can be
used in continuous function optimization without modifica-
tion. And Helmholtz machine is also easily expanded to con-
tinuous space, because Helmholtz machine is a kind of multi-
layer neural network[3].

The paper is organized as follows. In Section 2, previ-
ous works for capturing continuous distribution are reviewed.
Section 3 presents Bayesian evolutionary algorithm frame-
work. Section 4 describes the architecture and learning algo-
rithm of Helmholtz machine and modification of Helmholtz
machine for continuous space. Section 5 reports the experi-
mental results. Conclusions are drawn in Section 6.

2 Previous works for continuous space mod-
elling

In the early research that the EDA approach are proposed for
optimization in continuous space, it is assumed that the joint
density function follows an n-dimensional normal distribu-
tion which is factorized by a product of unidimensional and
independent normal density[6, 7, 13]. So these approaches
use simple models that do not cover any interactions in the
problem.

In the Stochastic Hill-Climbing with Learning by Vec-
tors of Normal Distribution (SHCLVND), Rudlof and
Koppen[14] estimate the joint density function as a product of
unidimensional and independent normal densities. The pop-
ulation of solutions is replaced and modelled by a vector of
mean values of Gaussian normal distribution p; for each op-
timized variable. The standard deviation o is stored globally
and it is the same for all variables. After generating a number
of new solutions, the mean values p; are adapted by means
of the Hebbian rule and shifted towards the best of the gen-
erated solutions and the standard deviation o is reduced to
make future exploration of the search space narrower.

Sebag and Ducoulombie[16] propose an extension of
the boolean PBIL algorithm to continuous space version,
named PBILc. PBILc also assumed the joint density func-

tion as unidimensional and independent normal densities like
SHCLVND but various ways of modifying the o parameter
have been exploited in PBILc. They proposed four heuris-
tics: (1) use a constant value for all the marginal and all the
generations; (2) adjust it as in a (1, A) ES; (3) calculate the
sample variance of the K better individuals of each genera-
tion; (4) by means of a Hebbian rule.

In another implementation of a real-coded PBIL[17], an
interval (a;, b;) and a number z; are stored for each variable.
" If 2; stands for a probability of a solution to be in the right haif
of the interval, the best solutions are selected and the numbers
z; is shifted towards them. When z; for a variable gets close
to either O or 1, the interval is reduced to the corresponding
half of it.

Salustowicz and Schmidhuber[15] suggest new algorithm
where computer programs or mathematical functions are
evolved as in genetic programming. In the probabilistic in-
cremental program evolution (PIPE) algorithm, probabilistic
representation of the program trees is used. Probabilities of
instruction in each node in a maximal possible tree are used
to model promising programs and generate new programs.
Unused portions of the tree are simply cut before the evalua-
tion of the program by a fitness function. Initially, the model
1s set so that the trees are generated at random. From the
current population of programs ones that perform best are se-
lected. These are then used to update the probabilistic model.
The process is repeated until the termination criteria are met.
PIPE is extension of EDA to genetic programming field.

In recent research, more improved approach is devel-
oped to capture multivariate distribution. Larrafiaga et al.[7]
considered the joint probability function of the continu-
ous variable as a multivariate normal distribution. - They
used Gaussian networks to capture the continuous distribu-
tion, and proposed the UMDAS, MIMICS, EGN A,.,
and EGN Apge. UMDACG is a continuous version of the
UMDA (univariate marginal distribution algorithm), and the
factorization of the joint density function is f;(x;6")
[T, fi(z;,6). Similarly MIMICS is a continuous do-
main modification of MIMIC (mutual information maximiz-
ing input clustering) . To choose the permutation, they
minimized the Kullback-Leibler information divergence be-
tween true density distribution and captured density function.
EGN A.. is an algorithm based on the learning and simula-
tion of Gaussian networks via detection of conditional inde-
pendencies by edge exclusion tests. First a Gaussian network
structure is learned, then the maximum likelihood estimates
for the parameters of the learnt Gaussian network structure,
and lastly the joint probability distribution function encoded
by the Gaussian network is simulated. EGN Apg, is the
same as EGN A.., but EGN Apg. uses BGe as the scoring
metric.

Recently, a unified framework of EDA, IDEA, has been
proposed[2]. The Iterated Density Estimation Evolutionary
Algorithm (IDEA) is to be regarded separately from the al-
gorithms that can be modelled by it, so IDEA framework is

509

. (Initialize) X°® « generate M search points x?
from the prior distribution Py(x). Set generation
countt + 0. -

. (Likelihood) Estimate the likelihood s p(D|A) of
individual by evaluating their law fitness on data
D.

. (P-step) Update the parameter 8* of a Helmholtz
machine that maximizes P(X¢|6).

. (V-step) Generate L variations X' = {x},...,x}}
by sampling from the posterior predictive dis-
tribution Pipq(x) = P(x|X*) using 8* of the
Helmholtz machine.

5. (S-step) Select M points from X’ and X! into
X = x4, . x4} based on their fitness

values f(x).

6. (Loop) Sett < ¢t + 1 and go to Step 2.

Figure 1: Outline of the Bayesian evolutionary algorithm us-
ing the Helmholtz machine for density estimation.

defined formally in both the case of discrete as well as con-
tinuous random variables. In IDEA framework, the Kullback-
Leibler divergence with various distributions such as uniform,
normal, or other distribution are used.

The FDA (Factorized Distribution Algorithm)[10] is also
a good theoretical framework of EDA for continuous space as
well as combinatorial optimization problem.

3 Bayesian Evolutionary Optimization

The Bayesian evolutionary algorithm (BEA) is a probabilis-
tic model of evolutionary computation that is based on the
Bayesian inductive principle [20, 21, 22]. While evolution-
ary algorithms iteratively produce the next generation of fitter
individuals[1] using crossover and mutation operators, start-
ing from an initial population of individuals, BEA do not use
crossover or mutation operators explicitly. By defining the
fittest model as the most probable model with respect to the
data and the prior knowledge, the Bayes theorem can be used
to estimate the posterior fitness of individuals from the prior
fitness. The posterior probabilities are then used to generate
plausible offspring individuals by sampling from the transi-
tion distribution formed by variation operators.

The outline of BEA using the Helmholtz machine for op-
timization problem is shown in Fig. 1. In essence, the BEA
consists of three steps: probability estimation (P), variation
(V), and selection (S) steps. In the P-step, the density of
the current population X? is estimated, in this case, by a
Helmholtz machine. In the V-step, the learned Helmholtz
machine is used to generate offspring population X' of L
data points. More details on learning and simulating from

the Helmholtz machine are described in the next section. In

the S-step, M best individuals are chosen into the next pop- -

ulation X**! from the union of X and X'. More detailed
explanation of BEA procedure will be followed:

Initially, a population X° of M individuals are generated
from a prior distribution P, (x) such as a uniform distribution
(—R, R). R has arange of a given function. Then, the fitness
value of the individual is observed and its likelihood P(X¢|6)
is computed, where @ is the parameter vector for the proba-
bility model, in this case the weights of Helmholtz machine.

Combining the prior and likelihood, we can compute the
posterior probability P(6| X*t) of individuals, using the Bayes
rule:

P(X6)P(6)

P(XT) M

P(OIX") =
Since P(X*) does not depend on the parameter vector 6,
maximization of Eqn. (1) is equivalent to maximizing the
numerator, i.e. '

POIXY) P(ktla)P(o). @

Note that, under the uniform prior for #, maximization of Eqn.’

(2) is reduced to the problem of finding the maximum likeli-
hood estimate 8*:

0* = argmgxxP(ﬂ]X‘) = argmoaxP(Xt}O). 3)
We make use of this assumption and present a Bayesian
evolutionary algorithm that performs optimization using a
Helmholtz machine to estimate P(X*|6*)[23]. P(f), the
weights of Helmholtz machine is estimated by wake-sleep al-
gorithm similar to the Estimation-Maximization method. The
same Helmholtz machine is used through generations.

Offsprings are then sampled from the posterior distribu-
tion by sleep phase of wake-sleep algorithm. And offsprings
are selected into the next generation by tournament selection.
In the experiments, we use L = 2M. This is similar to the
(1 +)) evolution strategy with u = M, X = 2M.

Note the similarity between the general structure of the
BEA and the conceptual EDA [11]. The original BEA is more
general than this[20, 22]; The one above is a EDA-like variant
of it. More general BEAs calculate the maximum a posteri-
ori probability rather than the maximum likelihood and the
sample size increases as generation goes on.

4 Helmholtz Machine for Density Estimation

The Helmholtz machine is a connectionist system with mul-
tiple layers of neuron-like binary stochastic processing units
connected hierarchically by two sets of weights, recognition
weights and generative weights [3].

Bottom-up connections R, shown as dashed lines in Fig.
2, implement the recognition model. This model is to infer a
probability distribution over the underlying causes y (latent
variables) of the input vector x:

P(y|x,R). *)

510

Latent Variables

Recognition
Connections

Visible Variables

Figure 2: The Helmholtz machine (two-layer network).

Top-down connections G, shown as solid lines in Fig. 2, im-
plement the generative model. This second model is to recon-
struct an approximation to the original input vector x

P(xly,G) ©)

from the underlying representation y captured by the hid-
den layer of the network. This enables to operate in a self-
supervised manner. Both the recognition and generative mod-

-els operate in a strictly feedforward fashion with no feedback.

In effect, Helmholtz machine estimates the distribution of
the data points X*, i.e. find the parameters §* = (R*, G*)
that maximize the likelihood P(X?). After the distribution is
learned, the samples from this distribution can be generated
by randomly setting the latent variables and then propagat-
ing the values down to the input layer, just as the process in
the sleep mode of the wake-sleep algorithm. This process is
equivalent to sampling L offspring from the posterior predic-
tive distribution since the following holds:

Py (x) P(x|X") ©)

/ / P(xly,8)P(y,0|X")dody (7)
Y JO

i

~ /y P(xly,6")P(y,0"|X)dy (8
L
~ 3 P(xlys,6°), ©

k=1

where §* = (R*, G*) is the maximum likelihood estimator
for data X, and P(x|yy,6*) is the generative model for the
latent vectors y; which are independently sampled from the
uniform distribution.

We modified the Helmholtz machine to capture continu-
ous distribution. Original Helmholtz machine use

p(y) = o(D_Rx), (10)

where o(z) = 1/(1 + exp(—xz)) is the conventional sigmoid
function, and decide the O or 1 probabilistically. Similarly
our modified Helmholtz machine use sigmoid function, but
to cover the range of given date set, we vary the slope param-
eter a of the sigmoid function; o(z) = 1/(1 + a - exp(—1)).

And instead of changing the value to O or 1, we use sigmoid
function values. Each weight has its own normal distribu-
tion N(b,7) as a noise to give a randomness. While orig-
inal Helmholtz machine hold the probability in a node, our
Helmholtz machine have the probability in a weight. More
detailed explanation will be followed:

Base on the wake-sleep algorithm that proposed by Hin-
ton et al. [4], we improved the wake-sleep algorithm to take
a modification of Helmholtz machine into account. There are
two phases in the algorithm: a wake phase and a sleep phase.
In the wake phase, The units are driven bottom-up using the
recognition weights, producing a representation of the input
vector in the hidden layer. Therefore, the representation y,.
produced in the hidden layer of the network provides a repre-
sentation of the input vector x.:

y. =x.R +vp. (1

where, v is a recognition noise vector which distribution is
gaussian distribution with N(bg,7%). Due to Vg, y. is
set probabilistically. Although the nodes are driven by the
recognition weights, only the generative weights are actually
learned during the wake phase using locally available infor-
mation and the simple delta rule [12]:

G' =G +n(x. — Gy.)ye, (12)

where G is the generative weight vector, X is the c-th sam-
ple, y. is the value of the latent variables, and 7 is the learning
rate. The variance 7% of noise v is decayed by a constant
a:

g = ath. (13)
The generative bias of b is also updated by delta rule:
b'g = bg + n(x. — Gy,)- (14)

In effect, this phase of the learning process makes gener-
ative weights be adapted to increase the probability that they
would reconstruct the correct activity vector in the layer be-
low.

In the sleep phase of the algorithm, the recognition
weights R are turned off. And all of the units in the net-
work is driven using the generative weights, starting at the
hidden layer and working down to the input units. Because
the nodes are stochastic and the values of the hidden units, y,
are randomly chosen, repeating this process would typically
give rise to many different “fantasy” vectors x; on the input
layer:

xr =y G +vg. (15)

where, v is a generative noise vector which distribution is

gaussian distribution with N(bg, 7%). v give randomness -

to z. These fantasies supply an unbiased sample of the net-
work’s generative model of the data. Having produced a fan-
tasy, the recognition weights are adjusted by the simple delta
rule [12]:

R’ =R + n(yx — Rxp)xg, (16)

511

where R is the recognition weight vector, y is the k-th latent
vector, and x; is the k-th fantasy vector. The recognition
noise is decayed by « which is the same as the generative
noise, Eqn. (13). And recognition bias is updated by

br =bg +n(yr — Rxy). 17

The sleep phase uses only locally available information with-
out reference to any observation. This is why offspring in the
Bayesian evolutionary algorithm can be efficiently sampled
from the distribution.

By the way, one of difficult problems is how to decide the
structure of Helmholtz machine. Small network cannot learn
the distribution well, but too large size will lead to overfit-
ting and take a lot of time for learning. To solve this prob-
lem, we use a constructive algorithm for structure learning in
Helmholtz machine[5]. A constructive algorithm starts with
a small network and then adds additional hidden units and
weights until a satisfactory solution is found, so it always
searches for small networks to reduce the training time. But,
since it is hard to decide when to stop the addition of hidden
units, we use a greedy approach to network construction. Af-
ter adding a new hidden unit with small random initial values,
we train the whole network by wake-sleep algorithm, not only
the new hidden unit.

5 Experimental Results

We have compared the results of Bayesian evolutionary algo-
rithm (BEA) with Helmholtz machine with those of simple
real-coded genetic algorithm (GA) on some functions such as
Sphere function, Ackley function, Griewank function, Rast-
rigin function, Rosenbrock function, and test functions from
Larrafiaga et al. [8].

e Sphere function:

N-1
fsphere(x) - Z If (18)

=0

where,:c_!:(o,...,O)N; fophere

=0;—20<z;<20

e Ackley function:

Fackiey(x) = =20 ezp(~-0.2 1_17_ Ii; zf)
N -
_ewp(ﬁ ZO COS(?""'M)) +20+e (19)
where,z¥=(0,....0)V; f3op1o,=0i—20<: <20
e Rastrigin function:
N-1
FRastrigin(x) = 10N + Y (z% ~10 cos(2m,-)) (20)

=0
2_ N. ge _
where,z=(0,..,0)" 5 fRragirigin=0;—5.12<2:<5.12

Table 1: Mean fitness values with standard deviations and number of evaluations for Sphere function, Ackley function,
Griewank function, Rastrigin function, and Rosenbrock function

GA BEA

N Mean =+ Stdev # Evaluations Mean =+ Stdev l # Evaluations
Sphere 50 1743 +£1.17 19,930,400 | 2.31 x 107° £2.28 x 10~° 15,700
100 20.37 £ 1.00 19,974,800 1.75 x 1075 £ 1.9275 20,200
Ackley 50 1863.00 4 132.02 19,919,800 | 1.48 x 1073 £ 7.61 x 10~ 16,400
100 §| 4549.99 £ 280.06 19,905,000 | 8.61 x 10~* +£4.90 x 10~¢ 21,800
Griewank 50 18.08 + 0.60 19,931,000 | 1.42 x 1075 +£2.44 x 10~° 28,100
100 20.81 £ 0.90 19,978,800 | 2.70 x 107°% £ 6.72 x 106 28,300
Rastrigin 50 221.72 + 21.57 19,459,800 | 2.32x 103 +£2.65 x 10~2 17,800
100 447.28 £ 22.70 19,792,800 | 3.73 x 10~4 £ 7.33 x 10~ 30,400
Rosenbrock | 50 || 3941.472 + 431.93 19,459,800 49.23 £ 0.47 13,100
100 || 8909.16 + 838.65 18,958,600 98.46 + 0.41 20,200

e Griewank function:

N-1

PIES
=0

1
me’ewank(X) = m .

N-1
— cos L. +1
iI:IO <\/(i+1))

where, 28 =(0,..,0)™; f2 10 wank=0;—600<z; <600

@n

Rosenbrock function:

N

SRosenbrock (X) = Z (100' (Il'i - -7/',2_1)2

=1
+(1-zi1)?) @2)

where,2¥ =(L1 1) 5 f o sen brock =0i—2.048< 2, <2.048

Test function 1:

Srest1(x) = {10—5 + ?; lyil}_1

Y1 =1=T1; Yi =Yi-1 + Tt =2,...,d 23)
where,2%=(0,....0)V; £, =10°—0.16<2;<0.16
e Test function 2:
d
fTest?(x) = Z ((1131 - I3)2 + (mi - 1)2) (24)
=1
where,z =(1,.y 1)V i fhe 0 3=0i—10<z; <10
e Test function 3:
4 2 d P’y
=1 i _ COs (-—l) 25
,fTestS(x) + ; 4000 1I=Il S \/; (25)

where,z3=(0,...,0)V; f2..,5=0;—600<x; <600

512

All functions except test function 1 have to minimize and
have their minimum at 0. On the contrary, test function 1 is
maximization function and has its maximum at 10°. Besides,
while x = (0, ..., 0) have their optimum for most functions,
x = (1,...,1) has their optimum for Rosenbrock function
and test function 2.

The GA used is the usual implementation that is based
on one cut-point crossover, one point mutation, and roulette-
wheel selection with elitist strategy. The parameters for GA
were: maximum generation = 10,000, population size =
2,000, crossover rate = 0.9, and mutation rate = 0.01. The pa-
rameters of the BEA with the Helmholtz machine were: max-
imum generation = 50, population size = 1, 000, learning rate
= 0.001, noise decay rate = 0.999, and the number of learning
iterations = 1, 000. In each generation, new 1, 000 offsprings
were sampled. Tournament selection with tournament size
two was used to select the next population, and also elitist
strategy was used. For the first five bench mark functions,
Helmholtz machine with two layer is used, otherwise for the
last three test functions, Helmholtz machine with three layer
is used to capture more complicate relationship. For construc-
tive learning of network structure, initial Helmholtz machine
has only one hidden unit in the hidden layer. In the case of
three layered Helmholtz machine, the latent variables in the
second hidden layer is set to one, and only latent variable of
first hidden layer is added. And if there is no improvement
during the first five generations, one hidden unit is added to
the network. For objective comparisons, the parameter values
for both methods were set as similarly as possible.

Tables 1 summarizes the experimental results of first five
benchmark functions. In the table, N is the dimension of
given function, ‘Mean’ is mean value of optimal over 20 runs,
‘Stdev’ stands for standard deviation of the optimal values,
and ‘# Evaluations’ is the average of number of evaluations
to the optimal over 20 runs.

As shown in Table 1, Bayesian evolutionary algorithm
using Helmholtz machine significantly outperforms the real-
coded genetic algorithm in all functions. For the first four test
functions, BEA can find quite good solutions using only one

Table 2: Mean values averaged on 100 runs for the test function 1, 2, and 3. Input dimension is 10 for all functions

UMDAY [MIMICY | EGNA.. | EGNAgge ES BEA
Test function 1 || 53460 58775 100000 100000 5910 76646.08
Test function 2 || 0.13754 | 0.13397 | 0.09914 0.0250 0 1.64 x 10°°
Test function 3 || 0.011076 | 0.007794 | 0.008175 | 0.012605 | 0.034477 | 7.90 x 10~°

hidden units. We speculate that the good performance is af-
fected by overall trend of four functions such as sphere func-
tion, Ackley function, Griewank function, and Rastrigin func-

tion. Even if there are many local optima around the global -

optima, overall shape of the functions is similar with that of
sphere function. This is why Helmholtz machine with only
one hidden unit can find good solutions. Even if there are
higher order correlations in the function such as Rosenbrock
function, BEA can find good solutions. Table 1 also describes
that the standard deviations of BEA is quite large. It means
that BEA with Helmholtz machine is unstable and some-
times converges to local optima. This unstableness is caused
by wake-sleep algorithm for Helmholtz machine. There has
been no general theoretical proof of the convergence of wake-
sleep algorithm. This is a weak point of Helmholtz machine.
But the empirical results are good enough to compensate this
weak point. But one strange point is the results of the lower
dimension cases (N = 50) are not better than the results of
the higher dimension cases (N = 100) except for Rosen-
brock function. To explain this behavior, we tested sphere
function and Ackley function with dimension 150 and 200;
besides test function 2 with dimension 30. For sphere func-
tion, we get the results 3.97 x 107% with N = 150 and
9.44 x 10~7 with N = 200; for Ackley function, 5.09 x 10~
with N = 150 and 9.41 x 10~4 with N = 200; for test func-
tion 2, 4.69 x 1077 with N = 30. Although the results go
better as dimension increases in sphere function, the results of
Ackley function are similar for the last three high dimensions
and the results of test function 2 go worse. We speculate that
this behavior is caused by characteristic of Helmholtz ma-
chine and benchmark functions.

The results of test functions from Larrafaga et al. [8] are
explained in Table 2. As described in Section 2, UM DAS
is a continuous version of the UMDA; MIMICS is a con-
tinuous modification of MIMIC with Kullback-Leibler diver-
gence; EGN A, is an algorithm based on the learning and
simulation of Gaussian networks using edge exclusion tests;
EGN Apg. uses BGe scoring metric. 100 experiments for
each function and algorithm were carried out. As shown in
the Table 2, proposed methods show highly competitive re-
sults. Although BEA are slightly worse than EGNA for test
function 1, they significantly outperform other functions.

Fig. 3 - Fig. 7 compares the fitness of BEA and GA with
respect to the total number of fitness evaluations. The upper
x axis stands for the number of fitness evaluations of BEA
and the lower x axis represent GA. The average numbers of
fitness evaluations to the best fitness are given in the Table 1.
BEA can find good solutions faster than GA in terms of the

513

Number of fitness evaluations (X 1000)
[10 20 30 40 50 60

Best fitness (iog scale)

i

1000

o 1000 2000 3000 4000 5000 6000 7000 8GO0 9UOO 10000
Number of fitness evaiuations { X 2000)

Figure 3: The number of fitness evaluations for sphere func-
tion with dimension N = 100.

Number of fitness evaluations (X 1000}
o 5 10 15 20 25 30 35 40 a5 50
100 T T T \ ™

Best ftness log scale)

o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of fitness evaluations { X 2000)

10

Figure 4: The number of fitness evaluations for Ackley func-
tion with dimension NV = 100.

Number of fitness evaluations (X 1000)
[] 10 20 30 40 50 50

Best ftness (log scale)

o 1000 2000 3000 4000 5000 6000 7000 ‘8000 2000 10000
Number of fitness evaluations (X 2000)

Figure 5: The number of fitness evaluations for Griewank
function with dimension N = 100.

Number of fitness evaluations (X 1000)

o 5 10 15 20 25 30 33 a0 a5 50
10000 —

1000 f

Best liness (log scale)

° 1000 2000 3000 4000 5000 €000 7000 8000 9000 10000
Number of fitness evaluations { X 2000)

Figure 6: The number of fitness evaluations for Rastrigin
function with dimension N = 100.

Number ot titness evaluations { X 1000)

5 10 15 20 25 30 35 40 45 50
——— T —r —

. N\\\

°
100000

Bast finess {og scale)

1000 Li—
°

1000 2000 3000 4000 5000 6000 7000 8000 SO00 10000
Number of fitness evaluations { X 2000)

Figure 7: The number of fitness evaluations for Rosenbrock
function with dimension N = 100.

number of fitness evaluations. Also BEA finds good solutions
in the early generations. Even if it takes time for training of
Helmholtz machine, BEA can find better solutions than GA
using same execution time.

6 Conclusions

We present the Bayesian evolutionary algorithm (BEA) us-
ing Helmholtz machine as a continuous function optimiza-
tion method. In the BEA framework, we modified Helmholtz
machine to estimate the continuous distribution. And we
test BEA for eight benchmark functions such as sphere func-
tion, Ackley function, Griewank function, Rastrigin function,
Rosenbrock function, and three test functions from recent re-
search. Our empirical results show that the Bayesian evo-
lutionary algorithms outperform the real-coded genetic algo-
rithms and other continuous estimation of distribution algo-
rithms. Based on previous work[23] and this work, we can
say that BEA with Helmholtz machine is a competitive op-
timization method and Bayesian evolutionary algorithm is a
general theoretical framework for the estimation of distribu-
tion algorithm.

Future works include the improvement of the wake-sleep
algorithm and network construction algorithm to capture
more reasonable distribution. And we want to compare the
results with evolutionary strategy and another previous EDA

514

methods.

Acknowledgments

This research was supported in part by the Korea Science and
Engineering Foundation (KOSEF) under Grant 981-0920-
107-2, by the Korea Ministry of Science and Technology
through KISTEP under Grant BR-2-1-G-06, and by the Min-
istry of Education under the BK21-IT Program.

Bibliography

[1]1 T. Bdck, Evolutionary Algorithms in Theory and Prac-
tice. Oxford Univ. Press, 1996.

[2] P. A. N. Bosman and D. Thierens, “Expanding from
Discrete to Continuous Estimation of Distribution Al-
gorithms: The IDEA”, it Parallel Problem Solving from
Nature - PPSN VI, pp. 767-776, Springer-Verlag, 2000.

[3] P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel,
“The Helmholtz machine”, Neural Computation, 7.
1022-1037, 1995.

[4] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal,
“The wake-sleep algorithm for unsupervised neural net-
works”, Science, 268: 1158-1160, 1995.

5] T.-Y. Kwok and D.-Y. Yeung, “Constructive Algorithms
for Structure Learning in Feedforward Neural Networks
for Regression Problems”, IEEE Transactions on Neu-
ral Networks, 8(3): 630-645, IEEE, 1997.

[6] P. Larrafiaga, R. Etxeberria, J. A. Lozano, B. Sierra,
1. Inza, and J. M. Pefia, “A review of the coopera-
tion between evolutionary computation and probabilis-
tic graphical models”, Proc. of the Second Sympo-
sium on Artificial Intelligence, CIMAF 99, pp. 314-324,
Adaptive Systems, 1999.

[7]1 P. Larrafiga, R. Etxeberria, 'J. A. Lozano, and

J. M. Pefia, “Optimization by learning and
simulation of Bayesian and Gaussian net-
works”, Technical Report EHU-KZAA-IK-4/99,

http://www.sc.edu.es/ccwbayes/postscript/kzaa-ik-04-
99.ps, 1999.

[8] P. Larrafiaga, R. Etxeberria, J. A. Lozano, and M. Pefia,
“Optimization in continuous domains by learning and
simulation of Gaussian networks,” Proceedings of the
2000 Genetic and Evolutionary Computation Confer-
ence Workshop Program, pp. 201-204, 2000.

[9]1 S. Margetts and A. J. Jones, “Phlegmatic Mappings for
Function Optimization with Genetic Algorithms”, Proc.
the Genetic and Evolutionary Computing Conference,
pp. 82-89, Morgan Kaufmann, 2000.

(10]

(1]
[12]

(13]

[14]

- [s)

(16]

(17}

(18]

[19]

(20]

[21]

H. Miihlenbein and T. Mahnig “FDA - A scalable
evolutionary algorithm for the optimization of addi-
tively decomposed functions™, Evolutionary Computa-
tion, 7(4):353-376, 1999.

H. Miihlenbein, T. Mahnig, and A. Ochoa, “Schemata,
distributions and graphical models in evolutionary opti-
mization”, Journal of Heuristics, 5:215-247, 1999.

R. M. Neal and P. Dayan, “Factor analysis using
delta-rule wake-sleep learning”, Neural Computation,
9:1781-1803, 1997.

M. Pelikan, D. E. Goldberg, and F. Lobo, “A Sur-
vey of Optimization by Building and Using Probabilis-

tic Models”, Computational Optimization and Applica-

tions, Kluwer, 2000 (In printing).

S. Rudlof and M. Ko&ppen, “Stochastic hill climb-
ing with learning by vectors of normal distri-
butions”, The first Online Workshop on Soft
Computing, http://www.uchikawa.nuie.nagoya-
u.ac.jp/wsc1l/papers/p077.html, 1996.

R. P. Salustowicz and J. Schmidhuber, “Probabilistic in-
cremental program evolution: stochastic search through
program space”’, Machine Learning: ECML-97, Lecture
Notes in Artificial Intelligence, Vol. 1224, pp. 213-220,
Springer-Verlag, 1997.

M. Sebag and A. Ducoulombier, “Extending
population-based incremental learning to continu-
ous search spaces”, Parallel Problem Sovling from
Nature - PPSN V, pp. 418-427, Springer-Verlag, 1998.

L Servet, L. Trave-Massuyes, D. Stern, “Telephone
network traffic overloading diagnosis and evolutionary
computation techniques”, Proc. of the Third European
Conf. on Artificial Evolution, pp. 137-144, 1997.

R. Thomsen, P. Rickers, and T. Krink, “A Religion-
Based Spatial Model for Evolutionary Algorithm”, Par-
allel Problem Solving from Nature - PPSN VI, pp. 817-
826, Springer-Verlag, 2000.

K. Weicker and N. Weicker, “‘On the improvement of co-
evolutionary optimizers by learning variable interdepen-
dencies”, Proc. 1999 Congress on Evolutionary Compu-
tation, pp. 1627-1632, 2000. :

B.-T. Zhang, “A Bayesian framework for evolutionary
computation”. In Proc. 1999 Congress on Evolutionary
Computation (CEC99), IEEE Press, pp. 722-727, 1999.

B.-T. Zhang, “Bayesian methods for efficient genetic
programming”. Genetic Programming and Evolvable
Machines, 1(3):217-242, 2000.

515

[22] B.-T. Zhang, “Bayesian Evolutionary Algorithms for

Learning and Optimization”, Proc. 2000 Congress
on Evolutionary Computation Workshop, pp. 220-222,
2000.

[23] B.-T. Zhang and S.-Y. Shin, “Bayesian Evolution-

ary Optimization Using Helmholtz Machines”, Parallel
Problem Solving from Nature - PPSN VI, pp. 827-836,
Springer-Verlag, 2000.

