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Abstract— Exploring microRNA (miRNA) and mRNA regu-
latory interactions may give new insights into diverse biological 
phenomena. While elucidating complex miRNA-mRNA interac-
tions has been studied with experimental and computational 
approaches, it is still difficult to infer miRNA-mRNA regulatory 
modules. Here we present a novel method for identifying func-
tional miRNA-mRNA modules from heterogeneous expression 
data. The proposed approach is layered hypernetworks con-
sisting of two layers which are the layer of modality-dependent 
hypernetworks and of an integrating hypernetwork. The layered 
hypernetwork model is suitable for detecting relationships be-
tween heterogeneous modalities. Applied to the analysis of 
miRNA and mRNA expression profiles on multiple human can-
cers, the proposed model identifies oncogenic miRNA-mRNA 
regulatory modules. The experimental results show that our 
method provides a competitive performance to support vector 
machines, and outperforms other standard machine learning 
algorithms. The biological significance of the discovered miR-
NA-mRNA modules were validated by literature reviews. 

I. INTRODUCTION 
ECENTLY, microRNAs (miRNAs) have been discovered 
as important regulators that play a major role in various 

cellular processes, such as cell differentiation, proliferation, 
growth, mobility and apoptosis. Multiple studies involving 
certain types of cancers have proved that miRNAs have a 
crucial role in tumor progression by regulating target mRNAs. 
Therefore, it is essential to identify functional interactions 
between miRNA and mRNA for understanding the con-
text-dependent activities of miRNAs in complex biological 
systems. However, the precise regulatory mechanisms of 
miRNAs and mRNAs remain to be elucidated.  

Early work in this area primarily focused on the ge-
nome-wide computational prediction of miRNAs [1] and their 
targets [2]. The miRNAs and mRNAs participate as important 
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components of gene regulatory networks in diverse biological 
processes together. The exploration of miRNA and mRNA 
interactions can be an essential first step toward the discovery 
of their combinational effects on different physiological con-
ditions. To address such issues, several efforts have been 
made to detect miRNA-mRNA regulatory relationships.  
Yoon et al. [3] proposed a computational method to predict 
the groups of miRNAs and mRNAs using weighted bipartite 
graph models. But, predictions only based on sequence in-
formation may be insufficient to determine the complex reg-
ulatory modules of miRNA and mRNA. Huang et al. [4] 
provided a probabilistic framework which applied Bayesian 
network parameter learning to detect miRNA-mRNA inte-
ractions. Also, Joung et al. [5] used a bi-clustering approach 
based on co-evolutionary learning strategies to discover 
miRNA-mRNA modules. Their methods integrate multiple 
sources to identify miRNA-mRNA pairs. Because of the 
complexity and diversity of miRNA and mRNA interactions, 
however, inferring functional miRNA-mRNA regulatory 
modules remains a difficult problem. 

In this paper, we propose a novel approach for identifying 
miRNA-mRNA regulatory modules associated with cancers 
from expression data. The proposed method is a new modified 
hypernetworks, so called layered hypernetworks (LHNs). A 
hypernetwork is a generalized hypergraph which can 
represent higher-order relationships among vertices [6]. The 
LHN is an advanced hypernetwork model having a hierar-
chical structure where evolutionary computation is embedded 
in the learning process. Given data consisting of more than 
one modality, an LHN is composed of two layers. The first 
layer’s hypernetworks are built from each modality of data. 
And the second layer’s hypernetwork represents intermodal 
relationships by combining the learning results of the first 
layer’s hypernetworks. This property is useful for analyzing 
complicated and heterogeneous problems such as the identi-
fication of miRNA and mRNA interactions. In the LHN 
frameworks, learning process is performed by an evolutionary 
algorithm to find the best combinations of higher-order ele-
ments in a huge combinatorial searching space.  

In experiments, we apply the LHN model to miRNA and 
mRNA expression profiles related to multiple human cancer 
[7], [8]. The goal is to identify functional miRNA-mRNA 
regulatory interactions with high accuracy. Our experimental 
results show that the proposed method provides a competitive 
performance to support vector machines and outperforms 
decision trees, Bayesian networks, naïve Bayes and random 
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forests. We also validated the biological significance of the 
discovered miRNA-mRNA modules by literature search. 

The paper is organized as follows. In Section 2, the con-
ventional hypernetwork models are explained. Section 3 de-
scribes our proposed approach, layered hypernetwork models. 
Section 4 elucidates the evolutionary learning procedure for 
LHNs. In Section 5, the experimental results on miRNA and 
mRNA expression profiles are provided. Concluding remarks 
and directions for further works are given in Section 6.  
 

II. HYPERNETWORK MODELS 
A hypernetwork is a weighted random hypergraph model 

inspired by biomolecular networks [6]. Here we briefly in-
troduce the hypernetwork models. In hypernetworks, a vertex 
denotes a value of attributes and a hyperedge represents an 
arbitrary higher-order combination of vertices with its own 
weight. Formally, a hypernetwork H is defined as H = (V, E, 
W), where V, E and W are a set of vertices, hyperedges, and 
weights respectively. A hyperedge of order (cardinality) k is 
referred to a k-hyperedge. A hypernetwork is called a 
k-hypernetwork where all hyperedges are k-hyperedges. Fig. 1 
shows an example of the hypernetwork with binary data con-
sisting of eight attributes. Since a hypernetwork can be con-
sidered as a probabilistic memory model to store segments of 
information of data, ( )

1{ }n N
nD == x , it can be formulated with 

the energy function of stored data and parameters. The energy 
of the k-hypernetwork is defined as follow: 
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where ( )k
iw is a weight of i-th hyperedge Ei with k-order, x(n) is 

the n-th example pattern to store and I(x(n), Ei) denotes the 
combination of elements of x(n) in hyperedge Ei. Then, the 
probability of the data being generated from the hypernetwork 
is given as a Gibbs distribution: 
 

,                 (2) 
 
where Z(W) is a partition function. The partition function 
Z(W) can be formulated as: 
 

 .                         
 

    .           (3) 
 
That is, a hypernetwork is described with a probability dis-
tribution of combinations of random variables with weights as 
parameters. A likelihood function also is maximized by 
finding hyperedge compositions which can reveal the distri-
bution of given data better [6], [11].  
For evolving hypernetworks, we assume that a population is a 
hypernetwork and its individuals are hyperedges. A change of 
a set of hyperedges leads to evolve a structure of hypernet-

works. Hyperedge compositions (hypernetwork structure) and 
hyperedge weights (parameters) are learned by evolutionary 
processes using the general operations of matching, selection, 
amplification, deletion of hyperedges. So the population is 
converged to the optimal hypernetworks that maximize the 
performance by evolutionary self-organizing process. Refer-
ences [9]-[12] provide various evolutionary strategies in the 
learning process of hypernetworks. Note that the learning task 
of a hypernetwork is focused on evolving the whole structure 
of a hypernetwork (population) rather than the respective 
hyperedges (individuals).  
 

III. LAYERED HYPERNETWORK MODELS 
An LHN is an advanced hypernetwork model with hierar-

chical structures consisting of two layers. The first layer is the 
layer of modality-dependent hypernetworks which reflects the 
property of data consisting of more than one modality. The 
second layer is an integrating layer to analyze relationships 
between each modality from the first layer’s hypernetworks. 
In the first layer, the same number of hypernetworks exists as 
the number of modalities of the given data, and each hyper-
network is built from samples of a modality. Dissimilar to the 
first layer, only one hypernetwork exists in the second layer. 
Hyperedges of the second layer’s hypernetwork are generated 
by combining randomly selected hyperedges from each 
modality hypernetwork. Therefore the hypernetwork of the 
second layer represents relationships among several modali-
ties. Same as conventional hypernetworks, formally, the 
second layer’s hypernetwork is defined with the energy func-
tion when provided a weight vector as a parameter. When 
given a dataset D with two modalities, 
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Fig. 1. An example of a hypernetwork with binary data con-
sisting of eight attributes and corresponding table of hyper-
edges. 
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layer’s hypernetwork ( )( ; )n We x  generated from the first 
layer’s k-hypernetworks is defined as follows:  

 
  
 

,          (4) 
 

where m1 and m2 are vectors of each modality variable which 
make up of a data sample x. Same as (2), then the probability 
of generating n-th data with two modalities, P(x(n)|W) is ex-
pressed as: 

{ }( ) 1 2 ( )1( | ) exp ( , ) ;
( )

n nP W W
Z W

eé ù= -ë ûx m m .      (5) 

Fig. 2 shows the architecture of a LHN for miRNA and mRNA 
expression data.  

IV. EVOLUTIONARY LEARNING OF LAYERED 
HYPERNETWORKS 

A. Evolving Hypernetworks in the First Layer  
Evolving process of hypernetworks in the first layer con-

sists of three parts: building, learning, and evaluating like 
conventional hypernetworks. Same as the general evolutio-
nary methods, it is important to decide the size of population 
in the building procedure of hypernetworks. The reason is that 
the size of a hypernetwork determines the coverage of un-

derlying patterns of data as well as the diversity of the popu-
lation. That is, it is needed that the size of a hypernetwork is 
larger than a specific threshold for a hypernetwork without 
any omitted attribute values. So, for generating a 
k-hypernetwork which misses i random variables, let us de-
note the number of omitted variables in a k-hypernetwork. 
Then, Pr(x = i) is calculated as follows:  

 
,  (6) 

 
where K is the number of attributes in data, k is the order of 
hyperedges, N is the size of data, and r is a sampling rate 
which means the number of generated hyperedges from an 
example. That is, N × r is equal to the number of hyperedges in 
a hypernetwork as a population size. Therefore, the probabil-
ity that no omitted variables exists in a hypernetwork, Pr(x = 
0) is  
 

 
       

.      (7) 
   

According to (7), assuming that the size of data is fixed, the 
sampling rate r and the order of hyperedges k determine 
whether omitted variables exist or not. That is, if r and k get 
larger, Pr(x = 0) decreases exponentially. Fig. 3 shows the 
changing pattern of omitted variables as the increasing of a 
population size and the order of hyperedges. Since high-
er-order hyperedges can represent only a specific pattern and 
are less likely to match examples in the learning process, 
however, too large k can lead a decrease of the classification 
accuracy. Also, too large population size causes a high cost to 
evolve hypernetworks. Therefore it is important to determine 
a suitable order and sampling rate to obtain good classification 
accuracy and to perform the learning process within reason-
able time. Learning of each hypernetwork is based on com-
paring values of vertices in a hyperedge with their corres-
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Fig 2. Architecture of LHN for miRNA and mRNA expression 
data. The LHN model is made up of two layers of hypernet-
works. Hypernetworks in the first layer are constructed reflecting 
each modality of miRNA and mRNA data and the second layer’s 
hypernetwork represents intermodality relationships between 
miRNA and miRNA hypernetworks of the first layer. 
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ponding values in training examples [9]. The fitness of 
hyperedges (so called weight) is updated by the learning 
process. The weight is calculated based on the number of 
correct and incorrect prediction on training dataset. In this 
study we obtain the weight of hyperedges w as linear sum-
mation of two factors as follow. Where #c and #w are the 
number of correctly and incorrectly predicted training exam-
ples,  
 

.           (8) 
 
In (8), the first term is an accuracy factor because the score is 
higher when correctly predicted data are more and incorrectly 
ones are less. The second term reveals the coverage of 
hyperedges for data, which means that the second score is 
higher if hyperedges match more training examples. We in-
troduced the replacement policy of hyperedges based on their 
weight as a strategy to enhancing the diversity of a hyper-
network in our previous study. However, the ratio of replaced 
hyperedges was fixed with a specific value [10]. In this study, 
we adopt the flexible ratio of hyperedge replacement to evolve 
hypernetworks of the first layer. The replacing ratio R(t) is a 
function of the generation number in the evolution process and 
it is defined as follows: 
 

,                  (9) 
 

where M and m are the maximum and minimum value of 
replacing rates, which are constants in boundary of (0, 1), t 
means the generation of evolution, and c is an arbitrary posi-
tive constant. According to (9), in the first generation of 
evolution, R(t) starts at M and a value converges to m as the 
evolution proceeds. In addition, we can control the converg-
ing speed to the minimum of a replacing ratio by the changing 
c. 
 

B. Evolving a Hypernetwork in the Second Layer  
A hypernetwork in the second layer represents the rela-

tionships between modalities. Since hyperedges in a hyper-
network of the second layer are generated by combining 
hyperedges of each hypernetwork in the first layer, the second 
layer’s hypernetwork represents interactions between each 
other modality.  

The maximum population size of the second layer’s 
hypernetwork can be equal to the size of products of the first 
layer’s hypernetworks. We integrate the hyperedges based on 
random selection to generate hyperedges of the second layer’s 
hypernetwork, because it is not feasible to learning all com-
binations of hyperedges from the first layer’s hypernetworks. 
Considering the causality of inter-modalities, for all hyper-
edges of the causal modality hypernetwork, the fixed size of 
randomly selected hyperedges are combined to generate the 
second layer’s hypernetwork from the resultant modality 
hypernetworks. The fixed size of selected resultant hyper-

edges per causal hyperedges is called to the combining ratio. 
The different point of LHNs from conventional hypernet-

work models is that there exists crossover effect. In traditional 
hypernetwork models, a hyperedge is sampled from an ex-
ample and there is not any crossover operation among 
hyperedges. However, by the process of separating and com-
bining attributes with randomness, crossover operations are 
carried out to evolve the second layer’s hypernetworks. Fig. 4 
depicts the evolutionary algorithm of LHN models.  

 

C. Significance Score Metric for hyperedges analysis  
To find the significant relationships between modalities, we 

define a metric in this study. The proposed metric named 
significance score S is calculated based on co-occurrence 
frequency in the hyperedges of attributes of each modality. 
That is, the number that each pair of two attributes appears in 
all hyperedges becomes S. When data consists of two modal-
ities, the proposed significant score S becomes a matrix whose 
size is l by m, where l and m are the size of modality 1 and 
modality 2 respectively. Significance score sij between the i-th 
attribute of a modality and the j-th attribute of the other 
modality, which is an element of S is defined to:  

 
 

1( ) ( ) exp tR t M m m
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Hi: hypernetworks of modality i in the first layer 
LH: the second-layer’s hypernetwork 
Mi: separate data of modality i 
R(i): replacing ratio of i-th generation 
CR: size of combined hyperedges of H2  per hyperedge of H1 
yi : class label of Ei 
H1 ← Makehypernetwork(M1); 
H2 ← Makehypernetwork(M2); 
For i ← 1 to End condition 

LH ← {}; 
      Evolvehypernetwork(H1); 
      Evolvehypernetwork(H2); 
      For j ← 1 to | H1| 
            E1 ← the j-th hyperedges of H1 
            For k ← 1 to CR 
                  idx ← Random(|H2|); 
                  E2 ← the idx-th hyperedges of H2 
                   If y1 is equal to y2  

E ← E1 ∪ E2; 
LH ← LH ∪ E; 

                 Otherwise re-select idx; 
         End If 
   End For 

      End For 
EvaluateonTrainingData(LH); 
H1 ← RemoveAndResample(H1, R(i)); 
 H2 ← RemoveAndResample(H2, R(i)); 

End For 
EvaluateonTestData(LH); 

Fig 4. The algorithm of generating, evolving and learning 
LHNs. Used functions such as Makehypernetwork(.), Evolve-
hypernetwork(.), RemoveAndResampling(.), and Evaluate(.) 
are explained in our previous studies [9]-[11]. Generally 
learning finishes after the fixed amounts of epochs 

2(# (# ) ) (1 ) (# # )c w c ww a a= ´ - + - ´ +

2302



 
 

 

 
 

    .       (10) 
 
The score is the number of hyperedges which have the i-th and 
j-th attribute values simultaneously as their vertices. There-
fore, a pair of attributes with high significance score can be 
regarded as a relevant interacting module. 
 

V. EXPERIMENTAL RESULTS 

A. Data preparation and Experimental Setting 
For experiments, we used miRNA and mRNA expression 

data associated to human epithelial cancers [7], [8]. The data 
have the expression profiles of 151 miRNAs and 10,262 
mRNAs from samples consisting of 21 normal tissues and 68 
multiple cancer tissues. We use a set of data (x, y), where x = 
(x1, x2, …, xn) ∈ {0, 1}n and y ∈ {0, 1}; i.e., a binary dataset. 
Although LHN models can process any attributes such as 
integers or real numbers, the discretized values simplify the 
representation of objectives and provide an efficient imple-
mentation of the LHN algorithm in silico. Hence, we pre-
process the expression dataset by two different ways, 
gene-wise normalization and sample-wise binarization. We 
normalize the expression profiles based on the average of its 
gene values for each sample. And then, we convert the nor-
malized expression values into binary numbers using the 
average of its samples for each gene. To obtain biologically 
meaningful results, also we extract a subset of genes from total 
mRNAs according to [13] and [14].  

The experimental parameters are shown in Table 1. Ac-
cording to Section 4.A, we set up 80 as a sampling rate to 
avoid unrepresented variables with considering computational 
costs. Also, we determine α value for the accuracy term to 
have the influence on calculating weights. Considering regu-
latory mechanism of miRNA-mRNA, in addition, both 
miRNA and mRNA become a causal and resultant modality in 
turn.  

 

 

B. The miRNA and mRNA Expression Classification 
Figure 5 depicts the change of hyperedge weights in the 

second layer’s hypernetworks as the generation goes on. The 
average weight curves are increased gradually, and stabilized 
after 50 epochs. The evolution process makes hyperedges 
having a specific pattern of data be survived for better classi-
fication. So, as the evolution progresses, the structure of 
hypernetworks is self-organized and finally converged to the 
optimal hypernetworks.  

Table 2 presents the performance comparison of the pro-
posed algorithm and other machine learning methods: support 
vector machines (SVMs), J48 decision trees (DTs), Bayesian 
networks (BNs), naïve Bayes (NB) and random forests (RFs) 
in WEKA. The linear kernel was used in SVMs with a se-
quential minimal optimization (SMO) and K2 is used as a 
search algorithm in Bayesian networks. All methods run 10 
times using 10-fold cross validation, and averaged. As shown 
in Table 2, the LHN classifier shows 95.30% of accuracy. It is 
superior to decision trees, Bayesian networks, naïve Bayes 
and random forests, while providing competitive performance 
to the SVMs. Compared to the SVMs, the LHN classifiers 
yield interpretable results in addition to predictions. 

TABLE 2. PERFORMANCE COMPARISON OF LAYERED HYPERNETWORKS AND 
CONVENTIONAL ALGORITHMS.  

 

Algorithms Avg. Accuracy 
(Stdev) 

Support Vector Machines 97.30 (0.58) 
Layered Hypernetworks 95.39 (0.98) 

Bayesian Networks (# parents = 3) 92.92 (1.59) 
Random Forests (# trees = 50)  90.90 (0.98) 

Naïve Bayes 89.21 (0.79) 
J48 Decision Trees 84.41 (2.70) 

Accuracy denotes the ratio of the number of correctly classified 
samples to the number of total samples on a given test data set. 
Also, average are obtained after 10 times repeated experiments 

2400

2500

2600

2700

2800

2900

3000

0 5 10 15 20 25 30 35 40 45 50

Number of generations

Av
er

ag
e 

of
 w

ei
gh

ts

 

Fig 5. The change of hyperedge weights in the second layer’s 
hypernetwork as generation goes on. Shown are the average 
weight rates of five hypernetworks.  
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TABLE 1. THE PARAMETERS USED FOR THE EXPERIMENT.  
 

Parameters Value 
Order (# miRNA, # mRNA) (3, 3) 
Replacing rate (Min., Max.) (0.1, 0.9) 
# Sampling rate 80 
# Combining rate 10 
Ratio of accuracy score (α) 0.8 
Num. of generations 
Causal modality 
Resultant modality 

50 
both 
both 

SR means a sampling rate, α is the ratio of accuracy score in 
obtaining weight of hyperedges, and CR represents the number 
of combination between hyperedges of miRNA and mRNA 
hypernetworks in the second layer’s hypernetwork. In this 
study, miRNA and mRNA become causal modality in turn 
because both of them can be the causal factor.  
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C.  Discovery of miRNA-mRNA Regulatory Modules 
The proposed method is proper for the analysis of biolog-

ical data, used to detect functional gene interactions. Table 3 
shows the high scored miRNA-mRNA interactions found by 
the LHNs. Applying the proposed metric (significant score S), 
we extracted the significant relationships of miRNAs and 
mRNAs based on co-occurrence frequency in the combining 
of hyperedges of each modality. The significant scores are 
calculated from each miRNA and mRNA consisting of a 
module, and averaged. The miRNAs and mRNAs in Table 3 
have been identified as cancer-related miRNAs and mRNAs 
in previous studies and their links have potential roles on the 
regulatory mechanism of diseases including cancers.  

The hsa-miR-21 is up-regulated in various human cancers 
such as breast, cervical, colon, glioblastoma, hepatocellular, 
leukemia, lymphoma and ovarian carcinoma. Also, it is widely 
believed to have oncogenic activities by down-regulating the 
expression of many tumor suppressor genes such as PDCD4, 
PTEN and TPM1 [15], [16]. The over expression of 
hsa-miR-29a in lung cancer induces aberrant expression of 
methylation-silenced tumor suppressor genes and it has a 
functional role in human carcinoma cell invasion and proli-
feration [17], [18]. Also, hsa-miR-154 is expressed at signif-
icantly higher levels in human B cell chronic lymphocytic 
leukemia (CLL) cancer [19] and hsa-miR-184 has reported to 
be a putative suppressor of glioma progression [20]. In addi-
tion, most of the mRNAs in Table 3 are known to be asso-
ciated with various human cancers and mRNAs of the same 
module share similar biological functions.  

To verify the identified miRNA-mRNA interactions, we 
analyzed the functional coherences of mRNAs in the same 
module using Gene Ontology (GO). The GO has been a 
standard way to validate the functional correlations within a 
group of genes by a statistical significance analysis. If the 
identified miRNA-mRNA interactions imply a potential ca-
pacity, mRNAs consisting of modules may reflect their func-
tional relevance in biological context.  

We used the tool GOstat [21] to find significantly overre-
presented GO terms. The GOstat calculates a p-value of an-
notated GO term based on the hypergeometric tests and per-
forms the multiple comparison correction (q-value). We 
examined statistically significant GO terms with q-value < 
0.01 for module I. The GO analysis results are shown in Table 
4.  Overall, the mRNAs in the module I belong to specific 

hsa-miR-21 hsa-miR-29a

NFIB TPM1 TGFBR2

Validated
Predicted 

 

 

miRNA Chr. Start-End Position Strand 
hsa-mir-21 Chr17 57918627-57918698 + 
hsa-mir-29a Chr 7 130561506-130561569 - 

 

mRNA Description 
NFIB Nuclear factor 1 B-type 
TPM1 Tropomyosin alpha-1 chain 

TGFBR2 Transforming growth factor, beta receptor II 
 
Fig 6. Biologically significant a subset of miRNA-mRNA 
regulatory module with supporting evidence. The upper rec-
tangles denote miRNAs and lower ovals are mRNAs. The shape 
of links corresponds to the biological relevance of each miR-
NA-mRNA binding event (Validated: experimentally sup-
ported target, Predicted: computationally predicted target). 
Tables represent the description of miRNAs and mRNAs 
comprising of a subset of module. 

TABLE 3. HIGH SCORED MIRNA-MRNA INTERACTIONS FORM LHNS.  
 

No. miRNAs mRNAs (avg. scores) 

I hsa-miR-21, 
has-miR-29a 

SFERS2 (959), NFIB (956), CRYAB (917), ALDH1A1 (916), CDKN1B (901), SART1 (864.5), HSPA1A (861.5), 
TGFBR2 (851.5), PPAP2B (837), PPP2CB (820), ARMCX1 (815.5), FLNB (814), HSP90B1 (797.5),  
GADD45G (795.5), MYLK (766), CTNNB1 (758.5), EPS8 (755), HNRPK (748.5), ZAK (745), FGFR1 (740.5), 
RRAGA (732.5), MT1X (730.5), CYP51A1 (728), BIRC4 (726), ZNF133 (713), GNA11 (712.5), YWHAE (712), 
ALDH2 (708.5), BNIP3L (708.5), TPM1 (704.5) 

II hsa-miR-154, 
hsa-miR-184 

NFIB (824.5), SFRS2 (821.5), CRYAB (809), CDKN1B (792), ALDH1A1 (788), PPAP2B (772), HSPA1A (767), 
SART1 (756), PPP2CB (752), TGFBR2(737.5), FLNB (707), EPS8 (705.5) 

 
TABLE 4. BIOLOGICAL PROCESSES OF POTENTIAL MODULE I ANNOTATED 

IN GO, OBTAINED BY GOSTAT (Q < 0.01, ADJUSTED P-VALUE).  
 

GO ID GO Terms q-value 
GO:0006915 Apoptosis 2.29E-03 
GO:0012501 Programmed cell death 2.29E-03 
GO:0008219 Cell death 2.29E-03 
GO:0016265 Death 2.29E-03 
GO:0042981 Regulation of apoptosis 3.44E-03 
GO:0043057 Regulation of programmed cell death 3.44E-03 
GO:0048869 Cellular developmental process 3.44E-03 
GO:0030154 Cell differentiation 3.44E-03 
GO:0048468 Cell development 3.45E-03 
GO:0006916 Anti-apoptosis 4.07E-03 

 
GO ID is the identification of the Gene Ontology (GO) term. 
p-value is calculated upon assuming hypergeometric distribution 
of annotated GO terms and multiple comparison correction 
(q-value) 

2304



 
 

 

functional categories, which are related to cell mechanism 
such as apoptosis, cell death, cell differentiation, cell devel-
opment and so on. These are all closely associated with cancer 
progression and development. This result suggests that the 
identified modules imply a specific functional role in cellular 
processes. 

Fig. 6 shows the more biologically meaningful a subset of  
miRNA-mRNA regulatory module with supporting evidence 
is extracted from the miRNA and mRNA interactions in 
module I. Tables in Fig. 6 present the description of miRNAs 
and mRNAs consisting of module in detail. It shows the 
chromosomal location information and functional description 
of their shared putative mRNAs. As mentioned above, 
hsa-miR-21 and hsa-miR-29a affect cell growth and devel-
opment, leading to a variety of disorders including human 
malignancies. And annotated genes, NFIB, TPM1 and 
TGFBR2, are closely associated with cancer. Especially, 
NFIB [22] and TPM1 [23] are experimentally tested target 
genes of has-miR-21 and actively involved in carcinogenesis. 
The nuclear factor I/BI (NFIB) binds the hsa-miR-21 pro-
moter as a negative regulator and the repression of NFIB by 
hsa-miR-21 causes a translational suppression in the biolog-
ical process. Tropomyosin 1 (TPM1) as a tumor suppressor is 
also implicated in cell migration and invasion and the 
down-regulation of TPM1 by hsa-miR-21 leads to tumor 
growth and progression. In addition, transforming growth 
factor beta 2 (TGFBR2) is an essential regulator of cellular 
processes including proliferation, migration and cell survival 
and TGFBR-mediated inhibition of proliferation is frequently 
observed in human cancer [24]. As a result, we can conclude 
the proposed method discover biologically valuable miR-
NA-mRNA modules with strong correlation which evidently 
relate to cancer mechanism.  
 

VI. CONCLUSIONS  
We propose a novel method, layered hypernetworks 

(LHNs), and apply the model to identifying functional 
miRNA-mRNA regulatory modules effectively from expres-
sion profiles. An evolutionary strategy is drawn to detect the 
best combinations of higher-order building blocks without 
exhaustive search in limited computing sources. The LHN 
structure is appropriate for detecting biologically relevant 
gene interactions from heterogeneous information sources, 
because it can represent the relationships between more than 
one modality. Also, the LHN can provide interpretable results 
for understanding of synergistic relations among multiple 
resources and can produces good classification performance. 

In this study, the proposed method is applied to the miRNA 
and mRNA expression profiles data associated with multiple 
human cancers. The experimental results show our method 
outperforms decision trees, Bayesian networks, naïve Bayes 
and random forests, while having competitive performance to 
support vector machines. The results also show that the LHN 
can identify miRNA-mRNA interactions with biological re-

levance. The discovered miRNA-mRNA regulatory modules 
are validated by GO analysis and literature reviews.  

In this study, the procedure for generating and learning a 
LHN is based on the random selection. Future work includes 
the introduction of prior knowledge such as correlation in-
formation in the LHN frameworks to obtain more biologically 
meaningful results. 
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