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Abstract- Evolutionary neural trees (ENTs) are tree-
structured neural networks constructed by evolutionary
algorithms. We use ENTs to build predictive models of
time series data. Time series data are typically charac-
terized by dynamics of the underlying process and thus
the robustness of predictions is crucial. In this paper,
we describe a method for making more robust predic-
tions by building committees of ENTs, i.e. CENTs. The
method extends the concept of mixing genetic program-
ming (MGP) which makes use of the fact that evolution-
ary computation produces multiple models as output in-
stead of just one best. Experiments have been performed
on the laser time series in which the CENTs outperformed
the single best ENTs. We also discuss a theoretical foun-
dation of CENTs using the Bayesian framework for evo-
lutionary computation.

1 Introduction

Time series data are typically characterized by dynamics of
the underlying process and thus the robustness of predictions
is crucial. One method of increasing the robustness of predic-
tive models is to use an ensemble or committee of models.

Committee machines can improve predictive accuracy by
reducing variance due to the averaging over many models.
Averaging is effective since the construction of models is an
optimization problem with many local minima. All global
optimization methods in the face of many local minima yield
“optimal” parameters which differ greatly from one run of
the algorithm to the next, i.e., which show a great deal of
randomness stemming from different initial points. This ran-
domness tends to differentiate the errors of the models, so
that the models will be making errors on different subsets of
the input space. As each network makes generalization errors
on different subsets of the input space, the collective decision
produced by the committee is less likely to be in error than
the decision made by any of the individual models.

From the evolutionary computation point of view, commit-
tee machines are natural; every evolutionary algorithm pro-
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duces a number of individuals as their result. In fact, Yao and
Liu [9] and Zhang and Joung [11] have independently devel-
oped methods for combining multiple individuals evolved by
evolutionary algorithms. The former (EPNet) used evolution-
ary programming to evolve multilayer perceptrons while the
latter (MGP) is based on genetic programming to construct
evolutionary neural trees (ENTs). Both have shown that com-
bining multiple models improves generalization performance
of models generated by evolutionary algorithms.

In this paper, we extend the concept of mixing genetic
programming (MGP) to further improve its performance by
using a new training method for committee members. As be-
fore, we use evolutionary neural trees (ENTS) to build pre-
dictive models of time series data. In previous work [11] we
used weighted majority algorithm to learn the combination
coefficients of ENTs. The committee of evolutionary neural
trees or CENTs is now trained by taking into account the cor-
relation between the errors made by the members. The ratio-
nale behind this approach is the theoretical observation that
minimizing the correlation between the committee members
maximizes the ensemble effect [8] (more details in Section 3
below).

The paper is organized as follows. In Section 2 we de-
scribe the structure of neural trees for modeling time series
data and the evolutionary algorithm for evolving them. Sec-
tion 3 presents the method for building a committee from the
individual neural trees evolved. Section 4 reports experimen-
tal results for laser-generated time series data. Section 5 con-
tains conclusions and some remarks on Bayesian aspects of
the committees of ENTs.

2 Evolutionary Neural Trees

2.1 Neural Trees

Let N'T (d, b) denote the set of all possible trees of maximum
depth d and maixmum b branches for each node. The nonter-
minal nodes represent neural units and the neuron type is an
clement of the basis function set F = {neuron types}. Each
terminal node is labelled with an element from the terminal
set T = {z1,22,:..,Zn}, Where z; is the ith component of



the external input x. Each link (7, 7) represents a directed con-
nection from node 5 to node 7 and is associated with a value
w;;, called the synaptic weight. The members of N7 (d, b)
are referred to as neural trees. In case of F = {X, I}, the
trees are specifically called sigma-pi neural trees. The root
node is also called the output unit and the terminal nodes are
called input units. Nodes that are not input or output units are
hidden units. The layer of a node is defined as the longest path
length to any terminal node of its subtree. Different neuron
types are distinguished in the way of computing net inputs.
For the evolution of higher-order networks, we consider two
types of units. Sigma units compute the sum of weighted in-
puts from the lower layer:

neti = »_wiy; ()

j

where y; are the inputs to the ith neuron. Pi units compute
the product of weighted inputs from the lower layer:

net; = H Wi5Y;
J

€

where y; are the inputs to . The output of a neuron is com-
puted either by the threshold response function

1 net; >0
— t;) = = 3
yi = o(net;) { 1 . met; <0 ®3)
or the sigmoid transfer function
: 1
yi = flnets) = v 4)

where net; is the net input to the unit computed by Eqn. 1 or
2.

A higher-order network with m output units can be repre-
sented by m sigma-pi neural trees. That is, the genotype A;
of 7th individual in our evolutionary framework consists of m
neural trees.

The neural tree representation does not restrict the func-
tionality since any feedforward network can be represented
with a forest of neural trees:

A= (Aiyl, Ai,g, ceey Ai,m)

where A; , € NT(d,b) Vk € {1,...,m}.

The connections between input units to arbitrary units in
the network is also possible since input units can appear more
than once in the neural tree representation. The output of one
unit can be used as input to more than one unit. The dupli-
cation does not necessarily mean more space requirements in
trees than network representations since frequently-used fit
submodules can be stored and multiply reused. This leads to
the construction of modular structures and reduces memory
requirements for representing the population [12].
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Neural trees do not require decoding for their fitness eval-
uation. Training and evaluation of fitness can be performed
directly on the genotype since both the genotype and phe-
notype are equivalent. Since subtree crossover used in ge-
netic programming may be applied without modification to
this representation, we can use genetic programming as the
main evolutionary engine.

2.2 Evolving Neural Trees

For the construction of neural models, we maintain a popula-
tion A consisting of M individuals of variable size:

Alg) = {41, A2, ..., An}. (5)

Each individual A; is a neural network represented as neural
trees. The initial population A(0) is created at random. In
each generation g, the fitness values F;(g) of networks are
evaluated and the upper 7% are selected to be in the mating
pool B(g). The next generation A(g + 1) of M individuals
are then created by exchanging subtrees and thereby adapting
the size and shape of the network. Mutation changes the node
type and the index of incoming units. The best individual is
always retained in the next generation so that the population
performance does not decrease as generation goes on (elitist
strategy).

Between generations the network weights are adapted by a
stochastic hill-climbing search. This search method is based
on the breeder genetic algorithm [6], in which the step size
Aw is determined with a random value € € [0, 1]:

Aw

R-27¢K, ©

where R and K are constants specifying the range and slope
of the exponential curve. In the experiments, the values were
R = 2 and K = 3. This method proved very robust for a
wide range of parameter-optimization problems. The fitness
F; of the individuals A; is defined as

Fi(g) = F(D|A{) = B(D|A]) + a(9)C(4]), (D)
where a(g) is the Occam factor [12] that adaptively balances
the error E(D|AY) and complexity C(A?) of the neural trees.
This evaluation measure prefers simple networks to complex
ones and turned out to be important for achieving good gen-
eralization.

3 Building a Committee of Evolutionary Neural
Trees

A committee consists of multiple neural trees evolved by the
algorithm described in the previous section. The committee
is trained to find an optimal combination weights to minimize



the mean squared error between the desired and the commit-
tee’s output with respect to the distribution of the training
data.

The combination weights are determined by the general-
ized ensemble method (GEM) as proposed by Perrone [7]. It
is a linear combination of the estimators based on the empir-
ical MSE and defined as

K
fepm(x) =) vifi(x), ®
=1

where the v;’s satisfy the constraint that ) v; = 1. We want
to choose the v;’s so as to minimize the MSE with respect
to the target function y(x). If we define the error e;(x) of
member 7 as

ei(x) = y(x) — fi(x) )
and the correlation matrix as

Ci; = Elei(x)e;(x)], (10)
then we must minimize

MSE[f) =) 0ic;Cj;. (11)
i,J

Each v; is then given as

K —
v = Zj:l Cijl
ey ey k)
2 k=1 2 j=1 Ckj

where C;; are elements of the covariance matrix of the errors
from the committee members f; and f;.

The theoretical background behind this approach can be
explained by the bias-variance analysis [8]. Let y(x) denote
the target value for the input x and f;(x) the actual output of
kth member of the committee. The inputs x are taken to be
drawn from some distribution P(x). A weighted ensemble
average is denoted by

(12)

K
) = vifi(x), (13)
i=1

which is the final output of the committee. v; is the weight for
combination. For an input x we define the error of the ensem-
ble e(x), the error of the ith member ¢;(x), and its ambiguity
a;(x):

ex) = (y(x)- f(x))? (14)
e(x) = (y(x)— fi(x)? (15)
ai(x) = (filx) - f(x))2 (16)

The ensemble error can be written as

e(x) = €(x) — a(x) (17)

1. Evolve a population of evolutionary neural trees.
2. Build a pool of candidate committee members.
3. Repeat the following N, times:
3.1 Build a committee by members from the pool.
3.2 Apply GEM to train the voting coefficients.
3.3 Update the best committee if necessary.
4. Use the best committee for final prediction.

Figure 1: Building the best committee of evolutionary neural
trees.

where &(x) = ), v;€;(x) is the average of the errors of the
individual predictors and a(x) = 3, v;a;(x) is the average
of their ambiguities, which is simply the variance of the out-
put over the ensemble.

All these formulas can be averaged over the input distri-
bution P(x) and we then obtain the ensemble generalization
error

e=¢€—a, (18)

where e(x) averaged over P(x) is simply denoted ¢, and simi-
larly for € and @. The first term on the right is the weighted av-
erage of the generalization errors of the individual predictors,
and the second is the weighted average of the ambiguities,
or the ensemble ambiguity. An important feature of equation
(18) is that it separates the generalization error into a term that
depends on the generalization errors of the individual mem-
bers and another term that contains all correlations between
the individuals. The relation (18) shows that the more the
predictors differ, the lower the error will be, provided the in-
dividual errors remain constant. This is the rationale behind
the correlation-based training method for building committee
machines. :

The algorithm for building a committee of evolving neu-
ral trees is summarized in Figure 1. This algorithm is applied
after the population of neural trees has evolved. Because the
number of combinations is very large, we first select a pool
of committee members from which a fixed size of committee
is selected. Selection of committee members is performed
probabilistically using a fitness-proportional mechanism with
exponential scaling. A total number N, committees are con-
structed and the best committee is then used for final predic-
tion.

4 Experimental Results

Figure 2 shows a series of 2000 measurements of chaotic
intensity fluctuations. This data was generated from far-
infrared NHj laser in a physics laboratory [4]. This problem



Algorithm Parameters Values Used
population size 200
max generation 50
Crossover rate 0.95
mutation rate 0.1
no. of local descents 100
training set size 1000
test set size 1000
size of committee pool 10
no. of committee members 3

Table 1: Parameter values used in the experiments.

1

x(t)

Figure 2: Laser data set: the first 1000 data points are used for
training ENTs and the rest 1000 are for testing their predictive
accuracy.

was used as a benchmark in the 1992 Santa Fe time series
competition. We used the first 1000 data points for evolv-
ing the neural tree models and the rest 1000 data points for
testing the predictive accuracy. The training data was con-
structed from the time series as follows: three contiguous val-
ues z(t — 3), z(t — 2), z(t — 1) were used as input for the tth
training pattern, and the immediate next point x(t) was used
as the target value y(t) to be predicted. The input attributes
of all data sets were linearly rescaled into the interval [0, 1].
The output attribute has continuous values between 0 and 1.

Table 1 summarizes parameter values used in the experi-
ments. Each run consists of 50 generations with a population
size of 200. The size of committee pool was 10 and the num-
ber of members of each committee was 3.

Figure 3 compares the fitness of the best neural trees with
that of the committee for the test set. This is the results
averaged over 10 runs. In most generations, the committee
machines outperformed the predictive accuracy of the single
best. This is especially true for early generations. As gener-
ation goes on the committee effect decreases. This seems to
be due to the decrease in diversity in the population. Figure 4
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Figure 3: Comparison of fitness between the best neural tree
and the committee for each generation (averaged over 10
runs).
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Figure 4: Performance of committees of ENTs for training
(t =0,...,1000) and for testing (¢ = 1001, ..., 2000).
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Figure 5: Difference of errors for each data point (averaged
over the whole generations) between the best ENT and the
committee of ENTs. Positive values mean that the committee
machines outperform the single best ENT on average for the
specific data point.
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Figure 6: Histogram of the three members chosen for the best
committee from the committee pool of size 10. This indi-
cates that the best three ENTSs tend to be selected as the best
committee, but not always.
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Figure 7: Standard deviation of fitness values of the commit-
tee members at each generation.
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Figure 8: Standard deviation of sum of test errors of the com-
mittee members.

shows the predictive performance of a committee of ENTs.

Figure 5 shows a more detailed comparison result. To plot
this, we first measured the difference in fitness values of both
methods for the ith data point at gth generation:

di(g) = €°"(9) — €{""(9)- (19)
By averaging these values for the whole generations
1 &
di= = 92:; di(g) (20)

we get the plot in the figure, i.e., the average difference of er-
rors for data point 7 between the best ENT and the committee
of ENTs. In this plot, a positive value indicates the superior-
ity of committee of ENTs to the single ENT in predicting the
particular data point z(t).

Figure 6 shows the histogram of the 3 members chosen for

“the best committee from the committee pool of size 10. This
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indicates that the best three ENTs tend to be selected as the
best committee, but not always. This verifies the necessity of
diversity in the committee and possibly the usefulness of re-
ducing correlations between the committee members, as was
discussed in the previous section.

Figure 7 shows the change of standard deviation of fit-
ness values of the committee members as generation goes on.
Figure 8 shows the change of standard deviation of the sum
of test error values of the committee members as generation
goes on. Comparing these graphs with the graph shown in
Figure 3 indicates once again the usefulness of diversity and
decorrelation of committee members.

5 Concluding Remarks

‘We have shown that committees of evolutionary neural trees
(ENTs) can improve the predictive accuracy of individual
ENTs applied to time series prediction. In particular, we
described a new weighting scheme for committee members
which take into account the correlations between committee
members. This method extends the concept of the mixing ge-
netic programming (MGP) [11] method to regression prob-
lems. '

The bias-variance analysis shows that the committee ef-
fect can be maximized by combining uncorrelated predictors
with large variance as long as their bias error is small. In this
respect, evolutionary neural trees provide natural candidates
for building committee machines since they generally have
diversity in architecture and weights.

From the Bayesian evolutionary point of view [10], it is in-
teresting to observe that the posterior probability distribution
of models can be built by the committee of ENTs. By consid-
ering each neural tree in the committee as a local minima, the



posterior distribution of the weights can be represented as

K
p(w|lD) = 3 p(Ai,w|D) 1)
i=1
K
= ) p(w|4:, D)P(4;|D) (22)

i=1
where A; denotes the neural tree evolved. This distribution is
then used to predict the mean output by the committee

fix) = /fi(x,w)p(w]D)dw (23)
K .
= - P(D) [ fixwin(wlds, D)dw2d)
i=1 Ri
K
= > P(AiD)fi(x) (25)
i=1

where R; denotes the region of weight space surrounding the
ith local minima, and f; is the corresponding neural tree pre-
diction averaged over this region. This indicates that the com-
mittee output is a linear combination of predictions made by
each of the neural trees corresponding to distinct local min-
ima, weighted by the posterior probability of that solution.
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