
Hypergraph Attention Networks for Multimodal Learning

Eun-Sol Kim1∗,† Woo Young Kang1∗ Kyoung-Woon On2 Yu-Jung Heo2‡ Byoung-Tak Zhang2,3

1Kakao Brain
2Department of Computer Science and Engineering, Seoul National University

3AI Institute (AIIS), Seoul National University

Abstract

One of the fundamental problems that arise in multimodal
learning tasks is the disparity of information levels between
different modalities. To resolve this problem, we propose
Hypergraph Attention Networks (HANs), which define a com-
mon semantic space among the modalities with symbolic
graphs and extract a joint representation of the modalities
based on a co-attention map constructed in the semantic
space. HANs follow the process: constructing the com-
mon semantic space with symbolic graphs of each modality,
matching the semantics between sub-structures of the sym-
bolic graphs, constructing co-attention maps between the
graphs in the semantic space, and integrating the multimodal
inputs using the co-attention maps to get the final joint rep-
resentation. From the qualitative analysis with two Visual
Question and Answering datasets, we discover that 1) the
alignment of the information levels between the modalities
is important, and 2) the symbolic graphs are very powerful
ways to represent the information of the low-level signals
in alignment. Moreover, HANs dramatically improve the
state-of-the-art accuracy on the GQA dataset from 54.6% to
61.88% only using the symbolic information in quantitatively.

1. Introduction

In this work, we address multimodal learning tasks, which
deal with relating information from multiple sources, such
as Visual Question and Answering tasks (with image and
text), visual captioning (with image and text), and video
understanding (with image, text, and sound). As neural
network-based methods have been successively used to deal
with large-scale unimodal data, such as images, natural lan-
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guages, and audio signal inputs, those methods have been
applied to multimodal learning. However, there is a severe
lack of consideration regarding the adequate form of the in-
put representations of the multimodal data to learn by using
the neural network-based methods.

Most of the previous researches on learning multimodal
inputs commonly take the following steps: to make input
features of each modality as vector forms after applying
pre-trained pre-processing methods, to integrate the multiple
input features into a common vector space, and to apply
problem-specific modules usually implemented with fully
connected neural networks. Specifically, in the integration
step, the feature vectors from different modalities are con-
sidered as abstracted information on the equivalent level,
even though those are obtained from totally different pre-
processing steps. In this conventional process, we argue that
aligning the information level of heterogeneous modalities is
a fundamental problem of multimodal learning and suggest
a novel method to bind the modalities in a common semantic
level.

To tackle this problem, we suggest using the symbolic
graphs as the common semantic representation for multi-
modal learning. We define the symbolic graphs as directed
graphs which contain nodes and edges, the nodes present
semantic units with textual form and edges present the rela-
tionship between them. For example, scene graphs [19] can
be used as the symbolic graphs for the image modality and
dependency trees in natural sentences for the text modality.
By extracting the symbolic graphs from each low-level in-
puts, we can compare the semantics between modalities in
the same abstraction level.

Based on the symbolic graphs which are on the same
semantic space, multimodal inputs can be effectively in-
tegrated. Here, we suggest a new graph neural net-based
algorithm, called Hypergraph Attention Networks (HANs),
which exploit the sub-structure of the graph to integrate sym-
bolic information. The main idea of HANs is to construct
the co-attention maps between multimodal inputs and to



integrate the inputs with the co-attention maps. While con-
ventional attention methods usually compare node values
independently to make attention maps, HANs consider struc-
tural similarity to consider high-level semantic similarity.

We show the effectiveness of the suggested method with
the most popular application in a multimodal learning task,
i.e., Visual Question Answering. We demonstrate the perfor-
mance of HANs on two recent Visual Question Answering
(VQA) datasets: VQA 2.0 [39] and GQA [11] which fo-
cus on real-world visual reasoning and multi-step question
answering. From the qualitative analysis of the suggested
method with two datasets, we argue that 1) the symbolic
graphs are a very powerful way to represent the information
of the low-level signals, and 2) to align the information level
between modalities is the fundamental problem. Quantita-
tively, also, the suggested method dramatically improves the
state-of-the-art on the GQA dataset from 54.6% to 61.88%
only using the symbolic information.

2. Related Work
In this section, previous works related to structural learn-

ing with neural networks and Visual Question Answering
(VQA) tasks are summarized.

2.1. Graph Matching Algorithms

In our knowledge, there are a few studies exactly related
to the suggested method, which deal with the problem of
integrating multimodal inputs in graph forms. For this rea-
son, instead, we review the studies of learning similarity of
graphs and connect it to attention mechanism, which par-
tially related to the suggested method.

The similarity between the two graphs can be defined by
graph Weisfeiler-Lehman isomorphism test [4]. Recently,
Xu et al. [34] showed that the representations learned by
Graph Neural Networks (GNNs) could be at most as power-
ful as the Weisfeiler-Lehman graph isomorphism test. That
is, the representations with sufficient message passing can be
used to determine whether two graphs are isomorphic or not.
Based on [34], Li et al. [21] proposed Graph Matching Net-
works (GMNs) to learn the similarity between two graphs.
In GMNs, node representations are updated not only with
message passing in each graph but also cross-graph atten-
tion mechanism to learn the similarity between two graphs.
Because the message passing can capture the dependence of
the graph, the cross-graph attention used in GMNs can grasp
structural similarity in two graphs.

2.2. Visual Question Answering

Visual Question Answering (VQA) is one of the rep-
resentative multimodal learning tasks to answer a textual
question about an image scene. The conventional VQA mod-
els [1, 36, 16, 17, 23, 6, 38, 15] learn the joint embedding of
a pair of the question and the image with two stages. First, it

learns image features and question embeddings based on pre-
trained models (e.g., pre-trained CNNs models for an image
and Word2Vec models for a question). Second, it combines
the learned visual features with question embeddings using
a multimodal pooling and an attention mechanism. Kim
et al. [17] proposed multi-modal low-rank bilinear pooling
(MLB), which approximates bilinear pooling between two in-
put embeddings with efficient computation, by enforcing the
rank of the weight tensor to be 1. Yu et al. [38] generalized
MLB to Multi-modal Factorized Bilinear Pooling (MFB), as
the rank of the weight tensor larger than 1. Bilinear Atten-
tion Network (BAN) [15] extends MLB in the respect that
it considers bilinear interactions between two input groups,
such as multiple feature sets of the question and the image.
Also, based on a powerful self-attention mechanism [30],
Tan & Bansal proposed a cross-modal Transformer to learn
vision-and-language interactions [27].

2.3. VQA with Graph Structure

The approaches modeling object interactions through
graph representations have been getting a growing inter-
est in the computer vision field. For the VQA task, Teney
et al. [28] initially proposed a method combining graph rep-
resentations of questions and abstract images with Graph
Neural Networks (GNNs). Also, the methods to model inter-
actions between objects through implicit and explicit graph
structure are proposed for counting problem [40, 29]. High-
level semantic information such as attribute and the visual
relationship was also exploited with [20, 37, 32, 31] to make
the model more powerful and interpretable. Norcliffe-Brown
et al. [24] introduced a method to construct a semantic struc-
ture in image conditioned on a question. Later, Cadene et
al. [5] extend this idea to modeling spatial semantic pairwise
relations between all pairs of regions. Recently, a condi-
tional iterative message passing algorithm for VQA and
GQA datasets was proposed to learn context-aware node rep-
resentations conditioned on a given question [9]. Also, Hud-
son et al. [12] suggested the Neural State Machine (NSM) to
address vision and language information on a symbolic level.
To solve the GQA task, NSM first predicts a probabilistic
scene graph. Then, to answer a given question, they perform
sequential reasoning over the graph based on an iterative
node traversing algorithm.

3. Hypergraph Attention Networks
The main purpose of the suggested method is to align in-

formation levels between multimodal inputs and to integrate
the inputs within the same information level. We define the
common semantic space between the modalities with the
symbolic graphs. After extracting symbolic graphs of each
modality, the semantics between two graphs are compared,
and then the co-attention maps are constructed based on the
semantic similarities. Then, the joint representation of the



Figure 1. The overall architecture of the suggested model. For a given pair of image and question, two symbolic graphs are constructed.
After constructing the symbolic graphs Gi and Gq , two hypergraphs HGi and HGq with random-walk based hyperedge are constructed. By
comparing the semantics of each hyperedges, a co-attention map A is constructed. The two hypergraphs are combined by the co-attention
map A, and the final representation zs is used to predict an answer for the given question.

multimodal inputs is constructed based on the co-attention
maps.

The suggested method, called Hypergraph Attention Net-
works (HANs), consists of four components: (1) construct-
ing symbolic graphs, (2) sampling random-walk paths on
the symbolic graphs to construct the hypergraphs, (3) match-
ing semantics between hyperedges to construct co-attention
maps, and (4) integrating the hypergraphs to get the final
representation of the multimodal inputs. The overall archi-
tecture of the proposed approach is shown in Figure 1.

To make clear the further discussion, HANs is explained
with a specific multimodal learning task, Visual Question and
Answering that has a different level of information in vision
modality (image) and language modality (text question).

3.1. Constructing Symbolic Graphs

The symbolic representations of the two modalities are
defined with graph forms.

For the image modality, symbolic graphs of the images
Gi = fV i; Eig are constructed based on the scene graph
information [14]. V i is the set of nodes that correspond to
words of object labels, attributes, and the relations between
the objects. The object labels and attributes represent the
name of the object and color, the shape of the object, respec-
tively. In addition, the relationships between two objects are
described with predicate phrases, e.g. to the left of.

From that information, the symbolic graphGi = (V i; Ei) of
an image is defined with a set of nodes V i = fvi1; vi2; :::; viSg
correspond to the set of words for labels, attributes, and
predicates. Furthermore, the set of edges Ei are defined as
following rules: (1) if a object node vij has an attribute vik,
then (j; k) 2 Ei, (2) if two objects vij and vik have a rela-
tionship vil , then (j; l) 2 Ei and (l; k) 2 Ei. The reason to
make edge-labeled scene graphs flat is to align the structure
between Gq and Gi.

For the text modality, we obtain the dependency tree of
the question sentence by using the Spacy library1. The sym-
bolic representation of the questionGq = fV q; Eqg consists
of the set of tokens (V q) and the dependency between the
tokens (Eq). In detail, (i; j) 2 Eq if vqi and vqj has the
dependency.

As both V i and V q correspond to word representations,
we consider two symbolic graphs are in the common (same)
information level.

3.2. Constructing the Hypergraphs

After building two symbolic graphs Gq and Gi, the co-
attention map A is constructed by matching semantics of
their sub-graphs. As the sub-graph matching problem is
one of the NP-hard problems, we suggest a simple but very

1https://spacy.io/



powerful approximate algorithm, HANs. We consider each
hyperedge (a sequence of nodes sampled by random-walk
algorithm along with directed edges) as a sub-graph, so
A is constructed by calculating the similarity between the
hyperedges from the Gi and Gq .

FromGq andGi, two probability distributions are defined
to construct the hypergraphs. The initial probability that a
node vi will be selected is defined with,

P 0
vi

=
deg+(vi) + �∑N
j=1 deg

+(vj)

where N and deg+(vi) represent the number of total nodes
and out-going edges from node vi, respectively. In addition,
the transition probability for both P q and P i is defined with,

Pv;u =

{
1��

deg+(v) ; if (v; u) 2 E
�; if (v; u) =2 E

where v and u are arbitrary nodes of a graph.
Along with P q and P i, Sq and Si random work steps for

Gq and Gi are conducted. In other words, a random-walk
path is defined by a transition sequence v0 ! v1 ! ::: !
vk, which starts from a random node v0 2 sample(P 0)
and samples k node to transition to next node as vi+1 :=
sample(Pvi

).
Now, the nodes in a random-walk path are connected in

a hyperedge, and then two hypergraphs HGi = (V i;M i)
and HGq = (V q;Mq) can be obtained, where a mi 2M i

corresponds to vi0 ! vi1 ! :::! vik.

3.3. Building Co-attention Maps between Hyper-
graphs

Now, the sub-graph matching problem to get the co-
attention map is approximated with the method which
matches the semantics between the hyperedges. In this sec-
tion, we define the semantics of each hyperedge M and
explain the method to compare the semantics between the
hyperedges.

As each node v represents a symbol in word level, the
semantic of each hyperedge M can be defined by combining
the word representations within the same hyperedge. We
suggest a simple but powerful way to define the semantics
by using pre-defined word vectors, such as GloVe [25].

y(m) := f(g0; g1; :::; gk) (1)

where g 2 R300 represents a 300 dimensional GloVe vector
[25] of a node v. A simple mean function is used for f , so
y(m) can be represented with a real-valued vector in R300.

Now, the co-attention map A is built by measuring sim-
ilarities between semantics of two hyperedges y(mi) and
y(mq). For the similarity measure, the low-rank bilinear
pooling method is used as follows.

A = softmax(W � (YqWq)(YiWi)
>) (2)

where Yq 2 RNq�300, Yi 2 RNi�300 represent k-step hy-
peredges sampled from a dependency tree and a scene graph.
Wq;Wi 2 R300�h and W 2 RNq�Ni

represent linear map-
pings which are all learnable parameters.

Here, the co-attention map has two interesting character-
istics. First, the co-attention map A is based on comparing
the semantics with the symbolic representations, while pre-
vious works on the neural representations having different
information levels. Second, the suggested method consid-
ers not only unitary relationships between two nodes, but
also the inherent structures by constructing the hypergraphs,
while most of the previous researches on the graph matching
compare the (neural) representations between two nodes.

Furthermore, in terms of the semantics of the hyperedges
y(m), we can consider utilizing the structural information of
the symbolic graphs. To get the informative node representa-
tions by considering the information of neighboring nodes,
message passing based Graph Neural Network (GNN) [7] is
designed2.

For the node feature matrix with GloVe vector X 2
RS�d, where S is the number of nodes and d is the di-
mension of GloVe vector, the new node feature matrix
Xnew 2 RS�d can be obtained as follows:

Zin = �(D�1
in AXWin +XWin)

Zout = �(D�1
outA

>XWout +XWout)

Xnew = �((Zin � Zout)Wmrg)

(3)

where A 2 f0; 1gS�S is an adjacency matrix corresponds
to E, i.e., Ai;j = 1 if (i; j) 2 E and Ai;j = 0 otherwise.
Din; Dout 2 RN�N are indegree, outdegree (diagonal) ma-
trix of A, respectively. All Win;Wout;Wmsg are learnable
parameters. Also, � is the element-wise multiplication. We
also employ a residual connection [8] followed by layer nor-
malization [3]. Now, y(m) can be newly defined with Xnew.
In Tabel 1, the effectiveness of using Xnew will be analysed.

3.4. Getting Final Representations

As the equation (2) provides the co-attention matrix
A 2 RNq�Ni

, we can integrate two hypergraphs HGi =
(V i;M i) and HGq = (V q;Mq) using any bilinear operator
B, such as BAN [15] or MFB [38].

Formally, a final representation zs for integrating Gq and
Gi is inferred by applying a bilinear operator B to Yq 2
RNq�300, Yi 2 RNi�300 and A 2 RNq�Ni

. If we choose
BAN as Uq; Ui 2 R300�h, zs can be represented as follows:

zs = (YqUq)
>A(YiUi) (4)

2In this work, as the symbolic graph is a directed graph, both outgoing
and incoming message passing procedures are considered.



Then, zs is used to predict an answer word with a fully
connected layer.

One thing that should be noted is that the integration of
the image and the question sentence is only through indirect
means, soft co-attention maps. Consequently, the interaction
between these two modalities is mediated through probabil-
ity distributions only.

3.5. Merging Visual Features

In addition to the integration of the symbolic level infor-
mation discussed at Section 3.4, here we show a simple way
to utilize given visual features with the integrated symbolic
features. Firstly, we de�ne the visual feature for each ob-
ject in an image asVi 2 RN v � d. In this work, the visual
features for each object are extracted from the pre-trained
BUTD model [1]. Then, we project theVi andYq onto same
dimensional space using two one-layered fully connect lay-
ers. Now, we get̂Yq 2 RN q � d̂ andV̂i 2 RN v � d̂. Next,
co-attention mapA � for Ŷq andV̂i can be predicted by us-
ing equation (2) and the visual-semantic featurezv can be
represented as follows:

zv = ( ŶqÛq)> A � (V̂i Ûi ) (5)

whereÛq; Ûi 2 Rd̂� h . Finally, we combine thezs andzv by
using two blocks of MRN [16] and the �nal output is used
to predict an answer word with a fully connected layer.

4. Experimental Results

4.1. Two Visual Question Answering Datasets

In this work, two kinds of VQA dataset are used for
experiments, which are Graph Question Answering (GQA,
[11]) and VQA v2 [2, 39].

GQA dataset [11] is a new question and answering dataset
featuring compositional questions over real-world images,
with more than 110K images and 22M questions. Each
question is associated with a structured representation of
its semantics and a functional program that speci�es the
reasoning steps has to be taken to answer it. Each image
is associated with a scene graph of the image's objects, at-
tributes, and predicates. 1,740 objects, 620 attributes, and
330 predicate labels are de�ned as a semantic ontology for
GQA. Each image contains 16.4 distinct objects, and each
object has 0.54 attributes and 3.08 relationships on average.
The dataset is split up roughly into proportions of 87%, 12%,
1% for train, validation, and test-dev sets, respectively. All
scene graph annotations on the training and validation sets
are publicly available.

The VQA v2 [2, 39] contains 204,721 natural images
from COCO and 1,105,904 free-form questions obtained by
crowdsourcing. Each question in the dataset is associated
with 10 different answers. Accuracy on this dataset (VQA

score) is computed so as to be robust to inter-human vari-
ability asacc(a) = min f the number of times a is chosen

3 ; 1g. The
dataset is split up roughly into proportions of 40%, 20%,
40% for train, validation, and test sets, respectively, and we
report the VQA score on the validation split as the experi-
mental results in Section 4.4.

4.1.1 Data Preprocessing

Question and Image featuresWe consider pairs of a ques-
tion sentence and an image as inputs and the pairs are
transformed into symbolic representations as preprocess-
ing steps. As the symbolic representation of each question,
a dependency tree is constructed by using the Spacy library.
Each token from dependency parsing is mapped into 300-
dimensional pre-trained GloVe word embeddings [25] and
the dependencies between the tokens are represented by a
directed adjacency matrix.

For image modality, scene graphs are used as a symbolic
representation. Originally, the scene graph [19] consists of
three components, which are the objects (names), their at-
tributes, and the relations between the objects. In terms of
graph notations, object names and the attributes are repre-
sented by nodes, and relations are annotated at edges be-
tween the corresponding nodes. In this paper, to make graph
structures of two modalities be equal, all three components
are represented by nodes, and the edges have only binary
value.
Scene Graph Generation (SGG)The scene graph anno-
tations for images are partially provided for the train and
validation split of GQA. For the images of GQA test-dev
and all splits of VQA, we generated scene graphs as follows.

Following the works [1], bounding boxes of objects in
images are detected by the Faster R-CNN method, and the
name and attributes of the objects are predicted based on
the ResNet-101 features from the detected bounding boxes.
We keep up to 100 objects with a con�dence threshold of
0.3 and predict the relations between the objects from the
frequency prior knowledge which is constructed from the
GQA scene graphs3.
Answer Vocabulary For the GQA dataset, we extract 1,853
possible answers vocabulary words from the train and valida-
tion sets. GQA dataset tightly controls the answer distribu-
tion by generating questions using question program. For the
VQA task, following previous studies in VQA, we consider
the 2,000 most common answers in the training dataset as
possible answer vocabulary for our network to predict.

3We have been tried to generate a scene graph by using recently sug-
gested SGG algorithms, such as [35, 33, 22]. However, we could not achieve
any improvement in the GQA/VQA accuracies. The reasons might be that
1) very small size of vocabularies for object and relation labels are used for
the conventional SGG problem setting, 2) the methods do not predict the
attributes, and 3) the annotated scene graphs used for training the methods
are very sparse.




