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Abstract 

A fundamental difference in artificial neural networks from symbolic artificial 
intelligence systems is that the knowledge does not need to be given explicitly 
as symbolic rules. Instead, neural networks are able to learn the knowledge 
from examples. However, coventional learning methods for neural networks 
have limited applicability since training examples have to be provided by the 
teacher. In this paper we investigate an active learning method which in­
crementally acquires knowledge from the environment by generating training 
examples autonomously. We use genetic algorithm to explore the example 
space and present a fitness measure for guiding the search for useful examples. 
The effectiveness of the method is demonstrated on a robot control problem. 
The simulation results show that teaching neural nets through autonomously 
created examples not only extends the application domains of conventional 
learning algorithms but also improves convergence speed and generalization 
performance of the network. w~ discuss the implications of this self-teaching 
approach to constructing intelligent systems. · 

1 Introduction 

Artificial intelligence (AI) research has made great advancements for last two decades. 
Many heuristic search algorithms, inference methods, learning paradigms, knowl­
edge representation schemes, and system architectures have been developed in the 
AI framework (Nilsson, 1980; Winston, 1992). Traditionally, problem solving in AI 
has been considered as a sequential symbol manipulation. Symbolic systems are ap­
propriate and useful for tasks whose solutions can be represented as $ymbolic rules. 
However, in some domains it is very difficult or impossible to find such rules. Ex­
amples include speech recognition, machine vision, and robot control (Arbib, 1987; 
Fischler and Firschein, 1987). 
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An artificial neural network consists of a large number of relatively simple pro­
cessing elements connected densely and computing in parallel. There are several 
reasons why neural networks or connectionist systems provide an attractive alter­
native to the sequential symbolic approach to constructing intelligent systems. 

One reason is the assumption on the structure of intelligent systems. Since its 
birth, the science of artificial intelligence has aimed to understand the intelligent 
behaviour of humans by simulation. Neural networks are, in their structure and 
function, more similar to human brain than conventional systems and seem to pro­
vide more sound substrate for building intelligent machines. The studies of formal 
neural networks may shed light on a deeper understanding of the principles on which 
human brain is based (Boden, 1990). 

Another reason is the processing speed of neural networks. Intelligent systems 
require not only good heuristics but also a powerful computation ability (Fahlman et 
al., 1983). Neural computation is inherently parallel (Zhang and Veenker, 1990) and 
can be easily implemented in VLSI (Mead, 1989). Neural hardware technology will 
allow the physical size of intelligent systems to decrease and the processing speed 
to increase significantly. 

The third reason is that neural networks can effectively handle uncertain informa­
tion. Information in neural nets are stored in a large number of connection weights 
and a connection weight takes part in a large number of information units. This 
distributed representation combined with parallel processing in a large number of 
small computing elements is robust against fault, noise, and incomplete information. 

One of the most interesting properties of neural networks is the learning abil­
ity. In neural systems, the knowledge does not need to be given explicitly as rules 
or procedures. Instead, networks learn the knowledge from examples. Therefore, 
learning is one of the central issues in building artificial neural systems. 

Among various kinds of network architecture, multilayer networks has been used 
most extensively due to their generality (Hornik et al., 1989). Learning in these 
networks is done supervised, i.e. on the basis of a training set of input-output 
pairs (xp, yp)· Although the actual goal of learning is to approximate the mapping 
yP = F(xp), most supervised learning algorithms assume the training to contain 
sufficient information. In this passive learning scheme the network can not learn 
much more across the training set provided by the environment (Figure 1). Thus 
the application domain and efficiency of such learning systems are limited. , 

To be more useful, a learning system should be able to actively interact with 
its environment to acquire new knowledge by generating hypotheses based on its 
own knowledge and testing them in its environment (Figure 2). Such ability, often 
referred to as exploration, is a fundamental feature of intelligent systems. Research 
on exploration has been done in symbolic machine learning under the AI framework 
(Michalski et al., 1986), but remains relatively unexplored in neural networks. 

The aim of this paper is to show that the learning in neural networks can be 
made more autonomous and thus more "intelligent" by active exploration of the 
environment. We describe an incremental learning algorithm that learns from the 
environment by generating training examples during learning. The method uses 
genetic algorithm (Holland, 1975; Goldberg, 1989) to find new useful examples. 
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Figure 1: The conventional passive learning paradigm 
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Figure 2: The active learning paradigm used in this paper 

The organization of the paper is as follows. In Section 2 we give a brief introduc­
tion to neural networks to motivate the proposed method .• The learning algorithm 
is described in Section 3. Section 4 demonstrates the applicability on robot arm 
control. In Section 5 we discuss the relationship with previous works and the impli­
cations of this work from the traditional AI perspective. 

2 Backpropagation Networks 

Neural networks learn an unknown relation F based on a training set: 

DN = {(xp, yp)}:=l (I) 

where Xp E X C ?JF, and YP E Y C ~0 • The pair of an input vector Xp and an 
output vector YP is called an example of F. The relation F can be described by a 
probability density function defined over the space X x Y C ~1+0 : 

(2) 

where Pp(x) defines the region of interest in the input space and Pp(y!x) describes 
the functional or statistical relation between the inputs and the outputs. 

Multilayer networks consist of units organized in layers (Figure 3). The external 
inputs are presented in the input layer which is fed forward via one or more layers 
of hidden units to the output layer. There is no direct connection between units in 
the same layer. The activation value of unit i is influenced by the activations ai of 
incoming units j and the real-valued weights Wij from j-th to i-th unit. The net 
input of unit i is computed by 

neti = L Wijaj + ei 
jER(i) 
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Figure 3: A feedforward neural network 

where R( i) is the receptive field of unit i. The bias Oi is usually considered as a 
weight WiQ connected to an extra unit whose activation value is always 1. 

The output value of unit i is determined by a nonlinear transfer function f. A 
commonly used output function is the sigmoid function 

1 
a·= f(net·) = ---

t t 1 + e-net; 
(4) 

· For the case of a two layer (one hidden layer) perceptron as shown in in Figure 3, 
the i-th output of the network, fi, i = 1, ... , 0, is a nonlinear function of inputs xk: 

(5) 

·where I, H and 0 are the number of input, hidden, and output units, respectively. 
Each network configuration w implements a mapping from an input x E X C 3(l to 
an output y E Y C ~0 . We denote this mapping by y = f(x; w), f: 3(l x W---+ 3(0

. 

The set of all possible weight vectors w constitutes the confinguration space W C ~d, 
where d is the total number of weights of the network architecture. 

Learning algorithms change the weights of the network so that the performance 
of the network improves. Backpropagation (Rumelhart et al., 1986) is a gradient 
descent method that uses a training set repeatedly to modify the weights. Each 
time an input vector Xp is presented to the network, the network computes an 
actual output vector y~ = f(xp; w) which is compared with the desired output Yp· 
A commonly used error measure is defined by the sum of squared errors e(yplxP, w): 

0 

e(yplxP,w) = L(Ypi-fi(xp;w))
2 (6) 

i=l 

where 0 is the number of output units and Ypi denotes the i-th component of vector 
Yp· Now the error e(yplxp, w) is propagated backwards to change the weights win 
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the direction to reduce the errors: 

(7) 

where \7(wt) is the t-th estimate of the error gradient with respect to the weights, 
and the parameter c is the step size. The effectiveness of this process is measured by 
the generalization performance, i.e. the ability to produce correct answers to new 
inputs. 

Most learning algorithms have considered the learning problem mainly as a prob­
lem of weight modification. However, there are other factors that affect the learning 
performance. One is the choice of training examples. The training set should be 
representative enough to achieve good results .. It is obvious that too small a training 
set cannot train the network to a sufficient accuracy. On the other hand, a large 
training set will slow down the convergence. The redundant examples may not con­
tribute to increasing the generalization performance of the network. The problem 
is how to select a small yet representative training set for the given network archi­
tecture. This has usually been considered as the task of human teacher, but the 
high nonlinearity of neural networks makes it difficult or impossible to determine 
the goodness of examples in advance. 

Zhang and Veenker (1991a) and Zhang (1993) .presents methods for selecting 
critical examples incrementally during one learning trial. Although proved useful 
for applications where a large data is known, the selection alone can not be applied 
in problems where examples are unknown at the outset or changing during learning. 
The method described in Zhang and Veenker (1991b) extends the selection method 
further by incorporating an example generation component. ' 

In both of these methods, the network size (number of hidden units) remains 
unchanged during learning. Thus, a continuous performance improvement is not 
guaranteed unless the given network size is appropriate. The present work improves 
this further by employing another learning component that grows network size as 
needed to make sure that the increased training set improves the performance. The 
problem of network size optimization, given a fixed training set, is discussed in 
Zhang (1993). We will focus on active exploration of example space to teach the 
networks. 

3 Teaching Backprop Nets by Genetic Search 

3.1 The Self-teaching Approach 

The proposed system consists of two learning modules: a neural learning (NL) mod­
ule and a genetic learning (GL) module. The neural module is divided into two 
learning components of adaptation and development. The adaptation component is 
responsible for changing the weights of the network and the development component 
constructs new network architecture. The genetic module also consists of two com­
ponents: selection and creation. The selection component filters useful examples 
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Figure 4: The self-teaching approach 

from a large set of candidates. The creation component generates novel examples 
by applying genetic operators on the existing training set. 

The interaction between these two modules are illustrated in Figure 4. The 
training set and the neural network play the role of communication channel between 
two modules. The neural module learns the examples which the genetic module 
provided and the result is stored in the neural network. The genetic module makes 
use of the knowledge in the neural network to generate more informative examples 
to train the network in the next stage. This is what we mean by self-teaching. The 
following section describes the four learning components and their relationship in 
more detail. 

3.2 Algorithm Description 

Learning starts with a feedforward neural network of h0 hidden units whose weights 
w are initialized randomly. The initial training set Do contains a small number of 
seed examples chosen at random from the given data set. The rest of the data set 
is referred to as the candidate set and denoted by Co. 

In the adaptation phase, the network is trained by the current training set D: 

· 8E 
Wij(t + 1) = Wij(t) + tp(t) a () + 1]p(i)6.Wij(i -1) 

Wij i 
(8) 

where EP = e(ypjxp, w) = I:f=1 (Ypi- fi(xp;w)) 2
• The parameters t and 17 denote 

learning rate and momentum factor. Training continues until the precision of the 
network converges to the desired accuracy. This results in an improved knowledge 
base w and the learning continues with the selection phase. Otherwise, the learning 
continues with the development phase. 

In the development phase, the necessity of network growing is first tested. We 
calculate at each time interval of 6.t the change of errors 6.E(t) = E(t- 6.t)- E(t) 
and its discounted sum: 

1 
6.Esum(i) = 6.E(t) + 26.Esum(i- 6.i). (9) 
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Then the network grows if the average value .6.Eav9 (t) = N~0 .6.Esum(t) exceeds 
some tolerance value. Otherwise, learning continues with the adaptation phase. 
The development process itself introduces new v units into the hidden layer and 
adaptation of the network is tried again. Increasing the network size can learn the 
training examples eventually since in the worst case every training example can be 
memorized to the same number of hidden units. 

In the selection phase, the training set D is increased by choosing examples from 
the candidate set C. If there are enough candidate examples, the most critical ). of 
them are included in the training set. The criticality ep of the examples is measured 
by the trained network and defined as proportional to the error: 

1 2 
eP = d. ( ) I!YP- f(xp; w)ll · 

liD YP 
(10) 

This ensures the nework to gain a maximal information by successive training. An 
information-theoretical discussion of this issue is given in (Zhang, 1993). If there 
remains less than >. examples in the candidate set and the performance of the network 
is still not satisfactory, the learning continues with the creati9n phase which then 
returns to the selection phase. 

In the creation phase, the new examples are generated and added to the candidate 
set. New examples are created by genetic recombination of two parent examples of 
the already existing training set D. The parent examples are chosen on the basis 
of the reproductivity rp(g) of the examples, i.e. the capability of examples to mate 
and generate child examples. rp(g) is defined as 

(11) 

where l'vf is the number of possible categories and N denotes the current training 
set size. NyP is the number of examples belonging to the category of YP in the 
current training set. The derivation of Eqn. (11) is given in Appendix. By this 
definition, the examples of categories which have fewer training examples have a 
larger probability of mating. So the novel examples of classes containing fewer 
examples will be generated more frequently than those classes which containing more 
examples. If two parent examples are determined, genetic operators are applied to 
generate offspring examples. Many operators are possible. For the experiments we 
have used the crossover and mutation operators described in the following section. 

3.3 Genetic Operators for Example Generation 

The crossover operation is used to exchange information between two parent exam­
ples. Let the parent chromosomes Xp and Xq be 

Xp = (xi', ... , x~) und Xq = (xi, ... , x~.). 

In two-point crossover ®(xp, Xq), two crossover sites are chosen in random (Figure 5). 
This divides the chromosome into three parts. The second part of each chromosome 
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Figure 5: Two-point crossover operation 

are exchanged, resuting in two offspring examples x~ and x~: 

(12) 

where a and b, 1 ~ a ~ b ~ n, are crossover sites and n is the chromosome length. 
In the case of bitstrings, consider the following two chromosomes 

1 1 1 1 1 
0 0 0 0 0 

1 1 
0 0 

1 1 1 
0 0 0 

where the cross sites are as indicated. The information exchange by crossover results 
in two new examples 

x' 1 

x' 2 

1 1 1 1 1 
0 0 0 0 0 

which are similar but different from the parents. 

0 0 

1 1 
1 1 1 
0 0 0 

After crossover, mutation operator is used. Mutation is useful for introducing new 
alleles which are nonexistent for the current training set. The mutation operator 8 
takes the input part of the example 

Xp = (xf, ... , x~) 

and generates a new string of the same length, 

8(xp) = 8(xi, ... ,x~) = (xf, ... ,x~) = x~ (13) 

where each component of the vector is modified with a mutation rate p > 0. For 
instance, consider a binary pattern of length 10: 

x1 1 1 1 1 1 1 1 1 1 1 

After mutation with a mutation rate of 0.2 (20%) one may achieve a bit vector, say 

X~ 1 1 0 1 1 1 0 1 1 1 

where two of ten bits are toggled. This method can be generalized to mutate a 
vector of real-valued components (Miihlenbein et al., 1993). 
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4 Application in Robot Control 

A camera is set up to observe a ball which rolls through the work space of a robot 
arm. The task of the robot is to grasp the ball before the ball rolles out of its work 
space. This seemingly very easy task turned out to be difficult for a learning machine 
to work in real-time (Moller, 1991). First, the ball should be traced visually and its 
position have to be determined (image recognition). Second, the movement of the 
ball can be predicted because the ball rolls while the arm is moving (prediction of ball 
position). Now the robot should be able to move in the work space to the position 
that gets to the ball using the minimum energy. This means that the position and 
the time must be chosen for the arm to reach the ball with a shortest trajectory 
(planning). Given a desired position, the corresponding joint angles of the arm have 
to be computed (inverse kinematics) and the motions should be produced (motion 
generation). 

The inverse kinematic problem was chosen to demonstrate the effectiveness of 
the self-teaching method. We used the robot arm RV M1 of Mitsubishi with five 
degrees of freedom (DOF), of which three DOF were used to solve the problems 
above. The rotation of the hand was not considered since it was irrelevant to the 
task. Figure 6 shows the kinematic parameters of the robot arm, where the angle 
el denotes the rotation of the basis:. 

160mm 250mm 

el 300mm 

Figure 6: Kinematic parameters of RV M1 

The inverse kinematics problem for this work consists of determining the joint 
angles of the robot arm to reach the desired position of the ball. This task can be 
described as a transformation 

(14) 

where (px,py,Pz) E JR3 is a point in the work space of the robot arm. The vector 
(61 , 02 , 03 , 04 ) E JR4 describes a point in the configurati<>n space of the joint angles. A 
total of 30 input units are used to encode the spatial position (px,py,Pz) of the ball 
in the work space of the robot arm. The four joint angles 81, 02 , 03 , 04 are represented 
on 24 output units of the network. Thus, each training example consists of an input 
YeCtor of 30 bits and an output vector of 24 bits. 

Instead of giving all training examples to the learning algorithm, we give the 
algorithm just one training example and let the genetic algorithm generate the input 
YeCtors, i.e. the training points. The corresponding joint angles for the training 
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Figure 8: Learning curves of a self-teaching network for robot arm control 
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points were produced by a simulated teacher which led the arm to the desired 
position and measured the joint angles .. Initially the network has one hidden unit, 
i.e. 30-1-24 architecuture. An appropriate number of hidden units for solving the 
problem must be found by the algorithm. 

The structure of the self-teaching method is illustrated in Figure 7 in comparison 
to the conventional method. Whereas the backpropagation procedure just adjusts 
the weights of the given network structure using the entire set of training exam­
ples, the self-teaching generates and selects the examples, network architecture, and 
weight values. 

The learning curves for solving the inverse kinematics problem are shown in 
Figure 8 as a function of the selection step s and the training set size N. The h curve 
shows the growing of network size in the number of hidden units. The T curve shows 
the relative time measured in total number of connection modifications for learning 
Ycl.rious size of examples. The G curve is the generalization performance of the 
network during learning. A continuous improvement of generalization performance 
is observed, suggesting the examples created are very useful. The learning finished 
lrith a network with 61 hidden units which corresponds to 12 development stages, 
ie. h0 = 1, h1 = 6, h2 = 11, ... , h12 = 61. Notice that only two thirds of all 
possible examples are used to find this network structure. The total number of 
weight modifications was 11.6 x 109 which took approximately 24 CPU hours on a 
SUN-2 Sparcstation. 

To see the effectiveness of the example generation and selection mechanism we 
studied the sequence of examples used during the learning. Figure 9 shows the 
learning points that were discovered and used to train the network on the xy-plane. 
The brightness of the field indicates in which generation the corresponding example 
..-as introduced to the training set. Notice the tendency of the algorithm to search 
for good examples first in the vicinity of the starting points for the training to 
be economic, but sometimes it makes some jumps to distant regions to learn more. 
l:sing about a quarter (250) of the all possible examples, the genetic search explored 
the work space of the robot arm very well. 

The six pictures in Figure 10 show in which generation the various joint angle was 
:first used to learn the inverse kinematics. Notice that many of the angle combina­
tions are used already in early generations. This implies the proposed reproductivity 
measure guide the search to generate the examples which is involved with the less 
used joints. In general, these examples will improve the performance of network 
ma\:imally since they contain more information than others. 

In summary, while the creation component searches in the work space of the robot 
arm, the selection component seeks critical examples in the configuration space of 
the arm. The iteration of creation and selection of examples leads to an automatic 
correction of the correlation between the input space and the output space of the 
desired mapping. This results in fast improvement of network performance. 
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5 Discussion 

Hinton (1989) classifies learning methods for neural networks into 3 groups: super­
vised learning, reinforcement learning and unsupervised learning. This taxonomy 
is based on the type of output signals provided by the teacher. In all of them, the 
input patterns have to be given by the environment and thus they can not learn 
new information without external stimuli. 

Another toxonomy of learning methods for neural networks is introduced in 
(Zhang, 1992), depending on the exploration capability of the algorithms. This 
classification includes 6 learning types shown in Table 1. The first three passive . 
algorithms corresponds to those of Hinton. In the last three types, the examples 
are determined by the learner itself, not by the teacher, and called active learning 
algorithms. The subclassification is again done by how the output patterns are gen­
erated. Each active algorithm may again be subdivided into selective algorithms 
and creative algorithms, depending on the examples are only selected from a given 
large data set, or created by the learner itself. The method we discussed in this 
paper belongs to the type 4 of above. It is straightforward to extend the method to 
~pply to type 5 and type 6 learning. . 

class type environment learner name 

type 1 x, y - passive supervised learning 

passive learning type 2 x, c(x, y) y passive semisupervised learning 

type 3 X y passive unsupervised learning 

type 4 y X active supervised learning 

active learning type 5 c(x, y) x, y active semisupervise learning 

type 6 - x,y active unsupervised learning 

Table 1: The 6 learning types 

Recently, Beyer and Smieja (1993) studied exploration in learning continuous 
functions by k-nearest neighbor methods. They distinguish density-based explo­
ration and error-based exploration. Density-based exploration gives an equally dis­
tributed grid-like structure of exploration points in the input space. The density 
of points is dependent on how many x values may be chosen. In the error-bsased 
exploration, the learner calculate the error before x is learned. The next x to be 
explored is chosen in the neighborhood of known x-values where the error is highest. 
The size of the neighborhood and the method for choosing a candidate out of this 
range are parameters of the exploration algorithm. Notice that our definition of re­
productivity considers not only the error of the examples but also their distribution. 
Furthermore the examples are generated incrementally by training the network be­
fore the next exploration stage starts. Thus our method combines, in a natural way, 
the error-based and density-based exploration. The simulation experiments suggest 
that this combination results in an automated correction of correlation between the 
input space and the output space of the target relation. 

14 
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Exploration has been, in one or the other way, applied to problems involving 
adaptation, in robot control (Thrun and Moller, 1992; Weber and Linden, 1992), in 
autonomous vehicles with a changing environment (Bessiere et al., 1993). The role 
of exploration in learning control has been discussed in (Thrun, 1992). Our method 
tti:ffers from the earlier approaches in that we use genetic search. The basic idea in 
..mg genetic algoirthms in teaching neural networks was to combine the exploration 
capability of genetic algorithm with the exploitation capability of neural networks. 
In defining the genetic search we considered training examples as individuals, train­
- set as population, and the trained neural network for fitness evaluation. We note 

genetic algorithms are especially efficient in high dimensional search space. 
The differences of our genetic algorithm from conventional ones should be made 

In conventional genetic algorithms, the population size is fixed over genera­
In contrast, the population size of our genetic algorithm increases monotoni­
Usual genetic algorithms search for a single string in the population, whereas 

considers the whole population as a solution. In coiwentional genetic alga­
the fitness value of an individual is fixed, while the fitness of examples in our 

varies during learning. Fitness functions are defined in usual genetic algorithms 
that more adapted individuals have larger fitness, while we defined the fitness of 

fitted examples to have larger fitness values. 
Note also that this use of genetic algorithms is distinguished from earlier work 

genetic algorithms for optimization<.)[ weights (Whitley et al., 1990) and topol­
(Zhang and Miihlenbein, 1993) of neural networks. They encode the weights or 

- .. t-.o..-+ure of a network as chromosomes which are modified by genetic operators. 
contrast, we consider training examples as individuals while weights and architec­

are modified in a standard way. As was shown in the robot control problem, 
proposed application of genetic algorithms complements the weaknesses of con­

learning methods in exploration. 
To summarize, we argued in this paper that the conventional learning methods for 

networks are insufficient for automatic knowledge acquisition. We introduced 
active learning method that teaches neural networks incrementally by exploring 
knowledge source. For exploration we used a genetic algorithm with the fitness 

IICUon defined to find out an informative subset of all possible examples for train­
the network. The simulation results on robot arm control show that the active 

l*•ra.twn in the example space combined with the network architecture optimiza­
not only extends the application domains of neural networks but also improves 

convergence speed and the generalization performance of existing learning algo­
. We believe that the genetic neural learning approach builds a good starting 

for constructing intelligent systems based on neural networks. 
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Appendix: Derivation of Reproductivity 

Exchanging information between every combination of parents would be too ex­
pensive to generate. new examples. To choose parents, we use a measure, called 
reproductivity, which should represent the importance of the examples for training 
the network. The reproductivity, rp, is defined as 

(15) 

where ep(g) is the criticality of the p-th example in the g-th generation (Eqn. 10). 
N is the size of the current training set. According to this measure, the examples 
which have larger criticality value have higher probability of the critical parents to 
be selected. Because critical examples are defined as those still having high errors, 
this reproduction scheme let the search for new examples focus on the regions which 
are not approximated well, yet. 

The reproductivity measure (15) is very general and can be used for many kinds 
of problems. However, if one has to solve a classification problem and the distri­
bution over the categories is known a priori, then this may be incorporated to the 
reproductivity. Let Nyp be the number of examples belong to the category Yp in the 
current training set: 

(16) 

If one chooses an arbitrary example from the current training set, the probability of 
the example to be in the category YP is given 

p - Nyp 
Yp- N (17) 

where N is the training set size. In order to train the network effectively, new 
training examples should come from those categories that have still less training 
examples. Let P;P the prior probability of the category Yp and set 

Fyp = 1- Pyp· (18) 

Now the reproductivity of the category YP is defined to be 

(19) 

where P;P and Pyp are a priori probability and the frequency of examples belonging 
to the category of example p, respectively. In the case of uniform distribution, (19) 
reduces to 

(20) 

where M denotes the number of categories. 
Now, the relative reproductivity of an example in a category, e~, is defined by 

considering the criticality of the example as 

16 



e' (g)= ep(g) 
P LqeSy P eq (g) 

(21) 

where Syp and ep(g) are the category and the criticality of the example p in the g-th 
generation. 

Now the effective reproductivity of an example is expressed as a product of (19) 
and (21): 

rp(g) = e~(g) · RyP(g) (22) 

In the case of uniform distribution, (22) reduces to Eqn. (11) 

(23) 

\vhere !vi is the number of different categories and N denotes the current training 
set size. 
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