Arbeitspapiere der GMD 805

Byoung-Tak Zhang

Teaching Neural Networks by Genetic Exploration

November 1993

GESELLSCHAFT FUR MATHEMATIK
UND DATENVERARBEITUNG MBH

e Arbeitspapiere der GMD enthalten vornehmlich
ab-Veroffentlichungen, spezialisierte Einzelergeb-
we und erginzende Materialien. Im Interesse einer
eren Verdffentlichung wird gebeten, die Arbeits-
picre nicht weiter zu vervielfiltigen. Die Autoren
I fiir kritische Hinweise dankbar.

The "Arbeitspapiere der GMD" primarily comprise
preliminary publications, specific partial results and
complementary material. In the interest of a subse-
quent final publication the "Arbeitspapiere" should not
be copied. Critical comments would be appreciated by
the authors.

GMD 1993

Alle Rechte vorbehalten. Insbesondere ist die Uber-
fithrung in maschinenlesbare Form sowie das Spei-
chern in Informationssystemen, auch auszugsweise, nur
mit schriftlicher Einwilligung der GMD gestattet.

No part of this publication may be reproduced, stored
in a retrieval system or transmitted, in any form or by
any means, electronic, mechanical, photocopying, re-
cording, or otherwise, without the prior permission of
the GMD. ‘

ft des Verfassers/
ess of the author:

Byoung-Tak Zhang

jut fiir Angewandte Informationstechnik
Gesellschaft fiir Mathematik

i Datenverarbeitung mbH

N 0723-0508

GMD-Arbeitspapiere
Herausgegeben von / Edited by:

Peter Behr

Raul Camposano
Thomas Christaller
Wolfgang K. Giloi
Peter Hoschka

Stefan Jahnichen
Thomas Lengauer
Erich J. Neuhold
Radu Popescu-Zeletin
Eckart Raubold
Ronald Tost

Ulrich Trottenberg
Dionystos Tsichritzis
Friedrich Winkelhage
Peter WiBkirchen

Verantwortlich fiir dieses Heft:

Prof. Dr. rer. nat. Thomas Christaller
Institut fiir Angewandte Informationstechnik

melischaft fiir Mathematik und Datenverarbeitung mbH

B Birlinghoven

57 Sankt Augustin
ach 13 16

1 Sankt Augustin

Telefon (02241)14-0

Telex 8 89 469 gmd d

Telefax (02241) 14 26 18

Teletex 2627-2241135=GMDVV

Abstract

A fundamental difference in artificial neural networks from symbolic artificial
intelligence systems is that the knowledge does not need to be given explicitly
as symbolic rules. Instead, neural networks are able to learn the knowledge
from examples. However, coventional learning methods for neural networks
have limited applicability since training examples have to be provided by the
teacher. In this paper we investigate an active learning method which in-
crementally acquires knowledge from the environment by generating training
examples autonomously. We use genetic algorithm to explore the example
space and present a fitness measure for guiding the search for useful examples.
The effectiveness of the method is demonstrated on a robot contro] problem.
The simulation results show that teaching neural nets through autonomously
created examples not only extends the application domains of conventional
learning algorithms but also improves convergence speed and generalization
.. performance of the network. We discuss the implications of this self-teaching
approach to constructing intelligent systems.

1 Introduction

Artificial intelligence (AI) research has made great advancements for last two decades.
Many heuristic search algorithms, inference methods, learning paradigms, knowl-
edge representation schemes, and system architectures have been developed in the
Al framework (Nilsson, 1980; Winston, 1992). Traditionally, problem solving in Al
has been considered as a sequential symbol manipulation. Symbolic systems are ap-
propriate and useful for tasks whose solutions can be represented as symbolic rules.

However, in some domains it is very difficult or impossible to find such rules. Ex-

amples include speech recognition, machine vision, and robot control (Arbib, 1987;

Fischler and Firschein, 1987).

An artificial neural network consists of a large number of relatively simple pro-
cessing elements connected densely and computing in parallel. There are several
reasons why neural networks or connectionist systems provide an attractive alter-
native to the sequential symbolic approach to constructing intelligent systems.

One reason is the assumption on the structure of intelligent systems. Since its
birth, the science of artificial intelligence has aimed to understand the intelligent
behaviour of humans by simulation. Neural networks are, in their structure and
function, more similar to human brain than conventional systems and seem to pro-
vide more sound substrate for building intelligent machines. The studies of formal
neural networks may shed light on a deeper understanding of the principles on which
human brain is based (Boden, 1990). '

Another reason is the processing speed of neural networks. Intelligent systems
require not only good heuristics but also a powerful computation ability (Fahlman et
al., 1983). Neural computation is inherently parallel (Zhang and Veenker, 1990) and
can be easily implemented in VLSI (Mead, 1989). Neural hardware technology will
allow the physical size of intelligent systems to decrease and the processing speed
to increase significantly.

The third reason is that neural networks can effectively handle uncertain informa-
tion. Information in neural nets are stored in a large number of connection weights
and a connection weight takes part in a large number of information units. This
distributed representation combined with parallel processing in a large number of
small computing elements is robust against fault, noise, and incomplete information.

One of the most interesting properties of neural networks is the learning abil-
ity. In neural systems, the knowledge does not need to be given explicitly as rules
or procedures. Instead, networks learn the knowledge from examples. Therefore,
learning is one of the central issues in building artificial neural systems.

Among various kinds of network architecture, multilayer networks has been used
most extensively due to their generality (Hornik et al, 1989). Learning in these
networks is done supervised, i.e. on the basis of a training set of input-output
pairs (Xp,¥p). Although the actual goal of learning is to approximate the mapping
Yy, = F(x,), most supervised learning algorithms assume the training to contain
sufficient information. In this passive learning scheme the network can not learn
much more across the training set provided by the environment (Figure 1). Thus
the application domain and efficiency of such learning systems are limited. ,

To be more useful, a learning system should be able to actively interact with
its environment to acquire new knowledge by generating hypotheses based on its
own knowledge and testing them in its environment (Figure 2). Such ability, often
referred to as exploration, is a fundamental feature of intelligent systems. Research
on exploration has been done in symbolic machine learning under the Al framework
(Michalski et al., 1986), but remains relatively unexplored in neural networks.

The aim of this paper is to show that the learning in neural networks can be
made more autonomous and thus more “intelligent” by active exploration of the
environment. We describe an incremental learning algorithm that learns from the
environment by generating training examples during learning. The method uses
genetic algorithm (Holland, 1975; Goldberg, 1989) to find new useful examples.

] Xp

Y
Teacher i Learner Vs

Figure 1: The conventional passive learning paradigm

Xp

YP yl
Teacher : Learner 4

Figure 2: The active learning paradigm used in this paper

The organization of the paper is as follows. In Section 2 we give a brief introduc-
tion to neural networks to motivate the proposed method. The learning algorithm
is described in Section 3. Section 4 demonstrates the applicability on robot arm
control. In Section 5 we discuss the relationship with previous works and the impli-
cations of this work from the traditional Al perspective.

2 Backpropagation Networks

Neural networks learn an unknown relation F based on a training set:

Dy = {(XP’yP)};\;l (1)

where x, € X C R/, and y, € Y C R°. The pair of an input vector x, and an
output vector y, is called an example of F'. The relation F' can be described by a
probability density function defined over the space X x Y C R+9:

Pr(x,y) = Pr(x)Pr(y|x) (2)

where Pr(x) defines the region of interest in the input space and Pr(y|x) describes
the functional or statistical relation between the inputs and the outputs.

Multilayer networks consist of units organized in layers (Figure 3). The external
inputs are presented in the input layer which is fed forward via one or more layers
of hidden units to the output layer. There is no direct connection between units in
the same layer. The activation value of unit 7 is influenced by the activations a; of
- incoming units j and the real-valued weights w;; from j-th to ¢-th unit. The net
input of unit ¢ is computed by

net; = Z wjja; + 0; (3)
JER()

3

Figure 3: A feedforward neural network

where R(i) is the receptive field of unit <. The bias §; is usually considered as a
weight w;o connected to an extra unit whose activation value is always 1.

The output value of unit 7 is determined by a nonlinear transfer function f. A
commonly used output function is the sigmoid function

1

a; = f(net,) = m. (4)

 For the case of a two layer (one hidden layer) perceptron as shown in in Figure 3,
the i-th output of the network, f;, ¢ = 1,...,0, is a nonlinear function of inputs z:

filxw) = fi (i wi; fi (ké)wjkxk>) ; (5)

i=0

' where /, H and O are the number of input, hidden, and output units, respectively.
 Each network configuration w implements a mapping from an input x € X C R to
 an output y € Y C RO. We denote this mapping by y = f(x;w), f : RIxW — RO.
The set of all possible weight vectors w constitutes the confinguration space W C ®¢,
where d is the total number of weights of the network architecture.

Learning algorithms change the weights of the network so that the performance
of the network improves. Backpropagation (Rumelhart et al., 1986) is a gradient
descent method that uses a training set repeatedly to modify the weights. Each
time an input vector x, is presented to the network, the network computes an
actual output vector y, = f(xp;w) which is compared with the desired output y,.
. A commonly used error measure is defined by the sum of squared errors e(y,|x,, w):

o
2
e(YplXp, W) = Z (ypi — filxp; W)) (6)
=1
where O is the number of output units and y,; denotes the ¢-th component of vector

y,- Now the error e(y,|x,, w) is propagated backwards to change the weights w in

4

the direction to reduce the errors:
Wit = W —eV(wy) (7)

where V(w;) is the ¢-th estimate of the error gradient with respect to the weights,
and the parameter € is the step size. The effectiveness of this process is measured by
the generalization performance, i.e. the ability to produce correct answers to new
mputs.

Most learning algorithms have considered the learning problem mainly as a prob-
lem of weight modification. However, there are other factors that affect the learning
performance. One is the choice of training examples. The training set should be
representative enough to achieve good results. It is obvious that too small a training
set cannot train the network to a sufficient accuracy. On the other hand, a large
training set will slow down the convergence. The redundant examples may not con-
tribute to increasing the generalization performance of the network. The problem
1s how to select a small yet representative training set for the given network archi-
tecture. This has usually been considered as the task of human teacher, but the
high nonlinearity of neural networks makes it difficult or impossible to determine
the goodness of examples in advance. '

Zhang and Veenker (1991a) and Zhang (1993) presents methods for selecting
critical examples incrementally during one learning trial. Although proved useful
for applications where a large data is known, the selection alone can not be applied
in problems where examples are unknown at the outset or changing during learning.
The method described in Zhang and Veenker (1991b) extends the selection method
further by incorporating an example generation component.

In both of these methods, the network size (number of hidden units) remains
unchanged during learning. Thus, a continuous performance improvement is not
guaranteed unless the given network size is appropriate. The present work improves
this further by employing another learning component that grows network size as
needed to make sure that the increased training set improves the performance. The
problem of network size optimization, given a fixed training set, is discussed in
Zhang (1993). We will focus on active exploration of example space to teach the
networks.

3 Teaching Backprop Nets by Genetic Search

3.1 The Self-teaching Approach

The proposed system consists of two learning modules: a neural learning (NL) mod-
ule and a genetic learning (GL) module. The neural module is divided into two
learning components of adaptation and development. The adaptation component is
responsible for changing the weights of the network and the development component
constructs new network architecture. The genetic module also consists of two com-
ponents: selection and creation. The selection component filters useful examples

il

aktuelle

Trainingsmenge

NL

modifiziertes Modell neue Netztopologie

neue Gewichie

der Umgebung

Figure 4: The self-teaching approach

from a large set of candidates. The creation component generates novel examples
by applying genetic operators on the existing training set.

The interaction between these two modules are illustrated in Figure 4. The
training set and the neural network play the role of communication channel between
two modules. The neural module learns the examples which the genetic module
provided and the result is stored in the neural network. The genetic module makes
use of the knowledge in the neural network to generate more informative examples
to train the network in the next stage. This is what we mean by self-teaching. The
following section describes the four learning components and their relationship in
more detail.

3.2 Algorithm Description

Learning starts with a feedforward neural network of hg hidden units whose weights
w are initialized randomly. The initial training set Dy contains a small number of
seed examples chosen at random from the given data set. The rest of the data set
is referred to as the candidate set and denoted by Cj.

In the adaptation phase, the network is trained by the current training set D:

wii(t + 1) = wis(t) + ep(t) e + 1p(t) Aty (¢ — 1) (8)

0E,
Ow;;(t)

where E, = e(yu|%Xp, W) = 32 (ypi — fi(xp;w))?. The parameters € and 7 denote
learning rate and momentum factor. Training continues until the precision of the
network converges to the desired accuracy. This results in an improved knowledge
base w and the learning continues with the selection phase. Otherwise, the learning
continues with the development phase.

In the development phase, the necessity of network growing is first tested. We
calculate at eacl: time interval of At the change of errors AE(t) = E(t — At) — E(t)
and its discounted sum:

AE,un(t) = AB(t) + -IQ-AEsum(t — AY). (9)

Then the network grows if the average value AE,,,(t) = -NI_—OAEsum(t) exceeds
some tolerance value. Otherwise, learning continues with the adaptation phase.
The development process itself introduces new v units into the hidden layer and
adaptation of the network is tried again. Increasing the network size can learn the
training examples eventually since in the worst case every training example can be
memorized to the same number of hidden units.

In the selection phase, the training set D is increased by choosing examples from
the candidate set C. If there are enough candidate examples, the most critical A of
them are included in the training set. The criticality e, of the examples is measured
by the trained network and defined as proportional to the error:

1

ep = m“yp — f(xp;w)]%. (10)

This ensures the nework to gain a maximal information by successive training. An
information-theoretical discussion of this issue is given in (Zhang, 1993). If there
remains less than A examples in the candidate set and the performance of the network
is still not satisfactory, the learning continues with the creation phase which then
returns to the selection phase.

In the creation phase, the new examples are generated and added to the candidate
set. New examples are created by genetic recombination of two parent examples of
the already existing training set D. The parent examples are chosen on the basis
of the reproductivity r,(g) of the examples, i.e. the capability of examples to mate
and generate child examples. r,(g) is defined as

ol 1 Ny
r3l9) = 2qecy, e(9) M (1 N) : 1)

where M is the number of possible categories and N denotes the current training
set size. Ny, is the number of examples belonging to the category of y, in the
current training set. The derivation of Eqn. (11) is given in Appendix. By this
definition, the examples of categories which have fewer training examples have a
larger probability of mating. So the novel examples of classes containing fewer
examples will be generated more frequently than those classes which containing more
examples. If two parent examples are determined, genetic operators are applied to
generate offspring examples. Many operators are possible. For the experiments we
have used the crossover and mutation operators described in the following section.

3.3 Genetic Operators for Example Generation

The crossover operation is used to exchange information between two parent exam-
ples. Let the parent chromosomes x, and x, be

X, = (2§, ...,2%) und x4 = (z§,...,2%).

In two-point crossover ®(x,,X,), two crossover sites are chosen in random (Figure 5).
This divides the chromosome into three parts. The second part of each chromosome

7

Figure 5: Two-point crossover operation

. are exchanged, resuting in two offspring examples x,, and x;:

_ P p q q9 P p

= (zf,..,zh_1, 2%, ..., 2§, Th g, .y Th) and (12)
— (9 g P g

= (2%,..., 2l _1, 28, ., 2}, Ty, .0y TL),

e =

Q o~

where a and b, 1 < a < b < n, are crossover sites and n 1s the chromosome length.
In the case of bitstrings, consider the following two chromosomes

X1 =

111111111111
X, = 000001001]000

where the cross sites are as indicated. The information exchange by crossover results

in two new examples

7
Xy

1111110
X, = 0000011

ol111
11000
which are similar but different from the parents.
After crossover, mutation operator is used. Mutation is useful for introducing new

alleles which are nonexistent for the current training set. The mutation operator ©
takes the input part of the example

x, = (2§, ...,2%)
and generates a new string of the same length,
O(x,) = 025, ..., 22) = (2}, .y 2P) = X, (13)

where each component of the vector is modified with a mutation rate 4 > 0. For
instance, consider a binary pattern of length 10:

x3 = 1111111111
After mutation with a mutation rate of 0.2 (20%) one may achieve a bit vector, say
x, = 1101110111

where two of ten bits are toggled. This method can be generalized to mutate a
vector of real-valued components (Miihlenbein et al., 1993).

8

4 Application in Robot Control

A camera is set up to observe a ball which rolls through the work space of a robot
arm. The task of the robot is to grasp the ball before the ball rolles out of its work
space. This seemingly very easy task turned out to be difficult for a learning machine
to work in real-time (Mdller, 1991). First, the ball should be traced visually and its
position have to be determined (image recognition). Second, the movement of the
ball can be predicted because the ball rolls while the arm is moving (prediction of ball
position). Now the robot should be able to move in the work space to the position
that gets to the ball using the minimum energy. This means that the position and
the time must be chosen for the arm to reach the ball with a shortest trajectory
(planning). Given a desired position, the corresponding joint angles of the arm have
to be computed (inverse kinematics) and the motions should be produced (motion
generation).

The inverse kinematic problem was chosen to demonstrate the effectiveness of
the self-teaching method. We used the robot arm RV MI of Mitsubishi with five
degrees of freedom (DOF), of which three DOF were used to solve the problems
above. The rotation of the hand was not considered since it was irrelevant to the
task. Figure 6 shows the kinematic parameters of the robot arm, where the angle
f; denotes the rotation of the basis:”

160mm 250mm
72mm

300mm

Figure 6: Kinematic parameters of RV M1

The inverse kinematics problem for this work consists of determining the joint
angles of the robot arm to reach the desired position of the ball. This task can be
described as a transformation -

]]{ : (pa:’pyapz) - (917 92, 937 94) (14)

where (p.,py,p.) € IR® is a point in the work space of the robot arm. The vector
(0,,0:,03,6,) € IR* describes a point in the configuration space of the joint angles. A
total of 30 input units are used to encode the spatial position (pz, py, p:) of the ball
in the work space of the robot arm. The four joint angles 64, 8,, 83, 64 are represented
an 24 output units of the network. Thus, each training example consists of an input
wector of 30 bits and an output vector of 24 bits.

Instead of giving all training examples to the learning algorithm, we give the
algorithm just one training example and let the genetic algorithm generate the input
wectors, i.e. the training points. The corresponding joint angles for the training

9

ach (b)

Environment

Teacher

l Examples

Backpropagation

l Weights

EE

1.0
09

0.8
0.7
0.6
0.5

0.4

0.3
0.2

0.1
0.0

(2)

Environment

Creation
Selection

l Examples

Development
Adaptation

Structure l l Weights

=k

(b)

igure 7: Comparison of the conventional backprop (a) and the self-teaching ap-

=56
h=61 h I
G=100%
T=11.6x10° G S
h=41 ,:'
T ,'I
.. " B v eeeeeeetreresasseeansasasenrenanas
II’
h=16 il
i
’I
0 5 10 15 20 25 30 35 40 47 S
1 101 201 301 401 501 601 701 801 S4IN

10

Figure 8: Learning curves of a self-teaching network for robot arm control

points were produced by a simulated teacher which led the arm to the desired
position and measured the joint angles. Initially the network has one hidden unit,
i.e. 30-1-24 architecuture. An appropriate number of hidden units for solving the
problem must be found by the algorithm.

The structure of the self-teaching method is illustrated in Figure 7 in comparison
to the conventional method. Whereas the backpropagation procedure just adjusts
the weights of the given network structure using the entire set of training exam-
ples, the self-teaching generates and selects the examples, network architecture, and
weight values. '

The learning curves for solving the inverse kinematics problem are shown in.
Figure § as a function of the selection step s and the training set size N. The h curve
shows the growing of network size in the number of hidden units. The T' curve shows
the relative time measured in total number of connection modifications for learning
various size of examples. The G curve is the generalization performance of the
network during learning. A continuous improvement of generalization performance
 is observed, suggesting the examples created are very useful. The learning finished
with a network with 61 hidden units which corresponds to 12 development stages,
1e. hg =1, by = 6, hy = 11, ..., hyo = 61. Notice that only two thirds of all
possible examples are used to find this network structure. The total number of
weight modifications was 11.6 x 10° which took approximately 24 CPU hours on a
SUN-2 Sparcstation. .

To see the effectiveness of the example generation and selection mechanism we
studied the sequence of examples used during the learning. Figure 9 shows the
Jearning points that were discovered and used to train the network on the zy-plane.
The brightness of the field indicates in which generation the corresponding example
was introduced to the training set. Notice the tendency of the algorithm to search
for good examples first in the vicinity of the starting points for the training to
be economic, but sometimes it makes some jumps to distant regions to learn more.
Using about a quarter (250) of the all possible examples, the genetic search explored
the work space of the robot arm very well.

The six pictures in Figure 10 show in which generation the various joint angle was
first used to learn the inverse kinematics. Notice that many of the angle combina-
tions are used already in early generations. This implies the proposed reproductivity
measure guide the search to generate the examples which is involved with the less
wsed joints. In general, these examples will improve the performance of network
' maximally since they contain more information than others. ‘

In summary, while the creation component searches in the work space of the robot
arm, the selection component seeks critical examples in the configuration space of
the arm. The iteration of creation and selection of examples leads to an automatic
correction of the correlation between the input space and the output space of the
'~ desired mapping. This results in fast improvement of network performance.

11

O = W R NN 0 o

"

01 2 3456782910
X

1
8 -

01

H o

2 345678910
X

101150 [1s1-200 []201-250

| REY B 510

Figure 9: Training points in work space

12

th3

thl th2

thl th3

H o

Figure 10: Learning points in configuration space

13

5 Discussion

Hinton (1989) classifies learning methods for neural networks into 3 groups: super-
vised learning, reinforcement learning and unsupervised learning. This taxonomy
is based on the type of output signals provided by the teacher. In all of them, the
input patterns have to be given by the environment and thus they can not learn
new information without external stimuli.

Another toxonomy of learning methods for neural networks is introduced in
(Zhang, 1992), depending on the exploration capability of the algorithms. This
classification includes 6 learning types shown in Table 1. The first three passive.
algorithms corresponds to those of Hinton. In the last three types, the examples
are determined by the learner itself, not by the teacher, and called active learning
algorithms. The subclassification is again done by how the output patterns are gen-
erated. Each active algorithm may again be subdivided into selective algorithms
and creative algorithms, depending on the examples are only selected from a given
large data set, or created by the learner itself. The method we discussed in this
paper belongs to the type 4 of above. It is straightforward to extend the method to
apply to type 5 and type 6 learning. '

class type || environment | learner name
typel || x, ¥ — passive supervised learning
passive learning | type 2 || x, ¢(X,y) y passive semisupervised learning
type 3 || x y passive unsupervised learning
typed || y b'd active supervised learning
active learning | type 5 || ¢(x,¥y) X,y active semisupervise learning
type 6 || — X,y active unsupervised learning

Table 1: The 6 learning types

Recently, Beyer and Smieja (1993) studied exploration in learning continuous
functions by k-nearest neighbor methods. They distinguish density-based explo-
ration and error-based exploration. Density-based exploration gives an equally dis-
tributed grid-like structure of exploration points in the input space. The density
of points is dependent on how many x values may be chosen. In the error-bsased
exploration, the learner calculate the error before x is learned. The next x to be
explored is chosen in the neighborhood of known x-values where the error is highest.
The size of the neighborhood and the method for choosing a candidate out of this
range are parameters of the exploration algorithm. Notice that our definition of re-
productivity considers not only the error of the examples but also their distribution.
Furthermore the examples are generated incrementally by training the network be-
fore the next exploration stage starts. Thus our method combines, in a natural way,
the error-based and density-based exploration. The simulation experiments suggest
that this combination results in an automiated correction of correlation between the
input space and the output space of the target relation.

14

Exploration has been, in one or the other way, applied to problems involving
adaptation, in robot control (Thrun and Méller, 1992; Weber and Linden, 1992), in
| autonomous vehicles with a changing environment (Bessiére et al., 1993). The role
of exploration in learning control has been discussed in (Thrun, 1992). Our method
differs from the earlier approaches in that we use genetic search. The basic idea in
wsing genetic algoirthms in teaching neural networks was to combine the exploration
capability of genetic algorithm with the exploitation capability of neural networks.
In defining the genetic search we considered training examples as individuals, train-
img set as population, and the trained neural network for fitness evaluation. We note
#hat genetic algorithms are especially efficient in high dimensional search space.
The differences of our genetic algorithm from conventional ones should be made
dear. In conventional genetic algorithms, the population size is fixed over genera-
Bons. In contrast, the population size of our genetic algorithm increases monotoni-
gally. Usual genetic algorithms search for a single string in the population, whereas
' ars considers the whole population as a solution. In conventional genetic algo-
Pithis the fitness value of an individual is fixed, while the fitness of examples in our
se varies during learning. Fitness functions are defined in usual genetic algorithms
I that more adapted individuals have larger fitness, while we defined the fitness of
sss fitted examples to have larger fitness values.

Note also that this use of genetic algorithms is distinguished from earlier work
Bang genetic algorithms for optimization of weights (Whitley et al., 1990) and topol-
ey (Zhang and Miihlenbein, 1993) of neural networks. They encode the weights or
pchitecture of a network as chromosomes which are modified by genetic operators.
h contrast, we consider training examples as individuals while weights and architec-
es are modified in a standard way. As was shown in the robot control problem,
e proposed application of genetic algorithms complements the weaknesses of con-
petionist learning methods in exploration.

To summarize, we argued in this paper that the conventional learning methods for
ral networks are insufficient for automatic knowledge acquisition. We introduced
B active learning method that teaches neural networks incrementally by exploring
p knowledge source. For exploration we used a genetic algorithm with the fitness
ion defined to find out an informative subset of all possible examples for train-
the network. The simulation results on robot arm control show that the active
doration in the example space combined with the network architecture optimiza-
not only extends the application domains of neural networks but also improves
convergence speed and the generalization performance of existing learning algo-
s, We believe that the genetic neural learning approach builds a good starting
t for constructing intelligent systems based on neural networks.

15

Appendix: Derivation of Reproducfivity

Exchanging information between every combination of parents would be too ex-
pensive to generate new examples. To choose parents, we use a measure, called
reproductivity, which should represent the importance of the examples for training
the network. The reproductivity, r,, is defined as

r _ ep(9) 1

0) = 5 o (15)
where e,(g) is the criticality of the p-th example in the g-th generation (Eqn. 10).
N 1is the size of the current training set. According to this measure, the examples
which have larger criticality value have higher probability of the critical parents to
be selected. Because critical examples are defined as those still having high errors,
this reproduction scheme let the search for new examples focus on the regions which
are not approximated well, yet.

The reproductivity measure (15) is very general and can be used for many kinds
of problems. However, if one has to solve a classification problem and the distri-
bution over the categories is known a priori, then this may be incorporated to the
reproductivity. Let Ny be the number of examples belong to the category y, in the
current training set:

Ny, = |Sy,I. (16)

If one chooses an arbitrary example from the current training set, the probability of
the example to be in the category y, is given

N,
Pyp = j%p (17)

where N 1s the training set size. In order to train the network effectively, new
training examples should come from those categories that have still less training
examples. Let Py the prior probability of the category y, and set

PYP=1_PYP' : (18)

Now the reproductivity of the category y, is defined to be

- D * * N
Ry,=P; -Py,=P; (1-Py)=P; (1 - ”Ay/_> (19)
where Py and Py, are a priori probability and the frequency of examples belonging
to the category of example p, respectively. In the case of uniform distribution, (19)
reduces to

1 N.
Ry, = <7 (1 ~ T\y,—) (20)

where M denotes the number of categories.
Now, the relative reproductivity of an example in a category, ef, is defined by
considering the criticality of the example as

16

! _ eP(g)
e(9) = = (21)

qESy}7 eq(g)
where Sy, and e,(g) are the category and the criticality of the example p in the g-th
generation.

Now the effective reproductivity of an example is expressed as a product of (19)
and (21): '

rp(9) = €5(9) - By, (9) (22)
In the case of uniform distribution, (22) reduces to Eqn. (11)
eP(g) 1 (]VYP)
ro(g) = =2 (1Y 23
P() zqesyp eq(g) M N ()

where M is the number of different categories and N denotes the current training
set size.

Acknowledgements

We wish to thank G. Veenker and H. Miihlenbein for stimulating and supporting
the work. Thanks are also to K. Mdller, P. H. Chu, F. Smieja, U. Beyer for their
discussions and helpful comments. This work was supported in part by the POSCO
Scholarship Society.

References

(1] Arbib, M. A. (1987) Brains, Machines, and Mathematics (New York: Springer-
Verlag).

[2] Bessiére, P., Ahuactzin, J. M., Albi, E.G., and Mazer, E. (1993) The Ariadne’s
clew algorighm: Global planning with local methods. In Proc. IEEE Conf. on
Intelligent Robots and Systems.

[3] Beyer, U. and Smieja, F. (1993) Learning from examples using reflective ex-

ploration. Tech. Rep., German National Research Center for Computer Center
(Sankt Augustin, GMD).

[4] Boden, M. A. (ed.) (1980) The Philosophy of Artificial Intelligence. (Oxford
University Press: Oxford). :

[5] Fahlman, S., Hinton, G. E., and Sejnowski, T. J (1983) Massively parallel
architectures for Al: NETL, Thistle, and Boltzmann machines. In Proc. AAAI-
83. '

17

[6] Fischler, M. A. and Firschein, O. (1987) Intelligence: The Eye, The Brain, and
The Computer (Addison-Wesely).

[7] Hinton, J. E. (1989) Connectionist learning procedures. Artificial Intelligence,
40:185-234.

[8] Holland, J. H. (1975) Adaptation in Natural and Artificial Systems (University
of Michigan Press: Ann Arbor). ’

[9] Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization, & Machine
Learning (Addison-Wesely). :

[10] Hornik, K., Stinchcombe, M. and White, H. (1989) Multilayer feedforward net-
works are universal approximators. Neural Networks, 2:359-366.

[11] Mead, C. (1989) Analog VLSI and Neural Systems (Addison-Wesely).

[12] Michalski, R. S., Carbonell, J. G., and Mitchell, T. M. (eds.) (1986) Machine
Learning: An Artificial Intelligence Approach, Vol. II. (Morgan Kaufmann).

[13] Moller, K. (1991) ARC: Adaptive Roboterkontrolle mit Konnektionistischen Sys-
temen, Ph.D. thesis, Informatik Berichte No. 86 (Institute for Computer Sci-
ence, University of Bonn).

[14] Mihlenbein, H. and Schlierkamp-Voosen, D. (1993) Predictive models of the
breeder genetic algorithm I: Continuous parameter optimization. Evolutionary

Computation, 1:25-49 (MIT Press).
[15] Nilsson, N. J. (1980) Principles of Artificial Intelligence (Springer-Verlag).

[16] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986) Learning internal
representations by error propagation. In Rumelhart, D. E. and McClelland, J. L.
(eds.) Parallel Distributed Processing, Vol. I (MIT Press), 318-362.

[17) Smieja, F. and Miihlenbein, H. (1992) Reflective modular neural network sys-
tems. Tech. Rep. No 633, German National Research Center for Computer
Science (Sankt Augustin: GMD).

[18] Thrun, S. and Méller, K. (1992) Active exploration in dynamic environments.
In Moody, J. E., Hanson, S. J., and Lippmann, R. P. (eds.) Proc. Neural Infor-
mation Processing Systems 4.

[19] S. Thrun (1992) The role of exploration in learning control with neural net-
works. In White, D. A. and Sofge, D. A. (ed.) Handbook of Intelligent Control:
Neural, Fuzzy, and Adaptive Approaches (New York: Van Nostrand Reinhold),
527-558.

: [20] Weber, F. and Linden, A. (1992) Neural networks for reflective exploration. In
Proc. 2nd Int. Conf. Automation, Robotics and Computer Vision, INV-8.1.1~
INV-8.1.4.

18

[21]

[22]
(23]
[24]
23]
[26]
. [27]

28]

 29]

130]

Winston, P. H. (1992) Artificial Intelligence (Addison-Wesley).

Whitley, D., Starkweather, T., and Bogart, C. (1990) Genetic algorithms and
neural networks: optimizing connections and connectivity. Parallel Computing,
14:347-361.

Zhang, B. T. (1992) Learning by Genetic Neural Evolution: Active Adaptation
to Unknown FEnvironments by Self-developing Parallel Networks, Ph.D. thesis
in German, ISBN 3-929037-16-5 (St Augustin, Infix-Verlag). Also available as
Informatik Berichte No. 93, Institute for Computer Science, University of Bonn.

Zhang, B. T. (1993) Accelerated learning by active example selection. To appear
in International Journal of Neural Systems.

Zhang, B. T. (1993) Self-development Learning: Constructing optimal size neu-
ral networks via incremental data selection. Tech. Rep. No. 768, German Na-
tional Research Center for Computer Science (St Augustin: GMD). Submitted
to IEEE Transactions on Neural Networks.

Zhang, B. T. and Kim, Y. T. (1990) Morphological analysis and synthesis by
automated discovery and acquisition of linguistic rules. In Karlgren, H. (ed.)
Proc. 13th Int. Conf. Computational Linguistics, Vol. 1, 431-436.

Zhang, B. T. and Miihlenbein, H. (1993) Genetic programming of minimal
neural nets using Occam’s razor. In Forrest, S. (ed.) Proc. Fifth Int. Conf.
Genetic Algorithms (San Mateo: Morgan Kaufmann), 342-349.

Zhang, B. T. and Veenker, G. (1990) Distributed parallel cooperative problem-
solving with a voting and election system of neural learning networks. In Eck-
miller, E. et al. (eds.) Parallel Processing in Neural Systems and Computers

(North-Holland), 513-516.

Zhang, B. T. and Veenker, G. (1991a) Focused incremental learning for im-

proved generalization with reduced training sets. In Kohonen, T. et al. (eds.)
Artificial Neural Networks. (Elsevier), Vol. I, 227-232.

Zhang, B. T. and Veenker, G. (1991b) Neural networks that teach themselves
through genetic discovery of novel examples. In Proc. Int. Joint Conf. Neural
Networks. (New York: IEEE), Vol. I, 690-695.

19

