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ABSTRACT

Two new molecular algorithms are presented
that are designed for the improvement of e��
ciency and reliability of DNA computing� The
�rst algorithm introduces an evolutionary cycle
to guide chemical reactions of DNA molecules�
The second molecular algorithm extends the �rst
one by adding another evolutionary loop for op�
timizing encodings of the problem instance� Just
as genetic programming is a method for pro�
gramming conventional computers by means of
natural evolution� our approach� which might be
called molecular programming� provides a method
for programming biocomputers by means of ar�
ti�cial evolution� Simulations have been per�
formed with the Hamiltonian path problem to
verify the positive e�ect of the presented molec�
ular algorithms on the reliability and e�ciency
of DNA computing�

� Introduction

Due to advances in molecular biology it is nowadays pos�
sible to create a soup of roughly ���� DNA strands that
�ts in a test tube� Adleman ��� has shown that each DNA
strand can be used to compute solutions to an instance
of the NP�complete Hamiltonian path problem �HPP��

Lipton ��� came up with using DNA computing to
solve the satis�ability �SAT� problem given a proposi�
tional formula decide if it is satis�able� He showed how
to use the same primitive DNA operations as Adleman
to solve any SAT problem with N binary inputs and G

logical gates �AND� OR� or NOT�� in a number of oper�
ations depending linearly on N �G�

In DNA computing two parameters are considered�
One is the time � required for separation of molecules�
The other is the accuracy� i�e� the error rate of a sepa�
ration� In a real system separation will not be perfect�
there will be errors of false positives and false negatives�
It is also possible that in real systems the time and ac�
curacy of a separation may depend on the tube and en�
codings being considered�

From the computer science point of view there are
several points of improvements in the Adleman and Lip�
ton constructions� Since ordinary sequential computers
are not restricted to using naive brute force algorithms
to solve NP�complete problems such as HPP and SAT�
Instead� they can use clever algorithms� which� while
still exponential� tend in practice to have much smaller
growth constants than the naive algorithm�

Another point is the encoding of problem instances
for DNA computing� Both Adleman and Lipton used
random encodings in their study� It was� however� sug�
gested that as the size of the problem grows� particular
attention must be paid to errors and the formation of
pseudopaths� Deaton et al� ��� �� have identi�ed various
types of errors that lead to false positives in Adleman�s
original techniques� They also gave a theoretical bound
on the size of problems that can be solved reliably and
used genetic search for good encodings� Garzon et al�
��� introduced a new measure of hybridization likelihood
and proposed a theory of error�preventing codes for DNA
computing�

Motivated by the work of Deaton and Garzon we in�
vestigate in this paper methods for further improvement
of the e�ciency and robustness of DNA computing� We
introduce two variants of molecular algorithms used in
the Adleman�s original experiment� The algorithms are
inspired by genetic programming� Just as genetic pro�
gramming is a method for programming �digital� com�



puters by means of �natural� evolution� our approach�
which might be called molecular programming� provides
a method for programming �biocomputers� by means
of �arti�cial� evolution� Genetic programming is based
on tree�structured representations while molecular pro�
gramming uses double strands of DNA sequences� Just
as trees are natural representations for conventional dig�
ital computers� DNA molecules are natural representa�
tions for biocomputers� The operators in genetic pro�
gramming are inspired by natural systems� whereas the
operators in molecular programming are inspired by ar�
ti�cial systems�

The �rst molecular programming algorithm we stud�
ied is an �evolutionary� version of simple DNA com�
puting� Instead of brute force search� the algorithm
�evolves� molecules by iterating synthesis and separa�
tion steps� The second molecular algorithm is an ex�
tended version of the �rst algorithm that has another
evolutionary loop outside the molecular evolution cycle�
This outer genetic search optimizes DNA encodings for
representing problem instances� It should be noted that
our approach is di�erent from that of Deaton at al� �
��
While they focuse on implementing a genetic algorithm
by making use of mismatches in chemical reactions� we
attempt to predict and minimize such mismatches to
make DNA computing more e�cient and reliable�

The e�ectiveness of the proposed algorithms is shown
on the Adleman�s graph for the 	�city Hamiltonian path
problem� Our simulation results using the NACST �Nu�
cleic Acid Computing Simulation Toolbox� system which
are being developed in the SCAI Lab at Seoul National
University indicate that the Adleman�s encoding scheme
with random ���mers are e�ective from biological point
of view� but are ine�cient from the computing point of
view� Our simulations suggest that there exist shorter
encodings that can e�ectively solve the 	�HPP problem�

The paper is organized as follows� In Section � we
describe the basic molecular algorithm for the Adleman�
style DNA computing� Sections � and 
 present two
new molecular algorithms and their experimental results
on the improvement of reliability and e�ciency of DNA
computing� Section � summarizes our �ndings from this
study and suggests further work�

� Adleman�Style DNA Comput�

ing

Adleman ��� showed how to use molecules of DNA to
solve an instance of the Hamiltonian path problem in a
test tube using standard methods of molecular biology�
Given a set of 	 vertices with some interconnecting �di�
rected� paths� the problem is to �nd a path which visits
each vertex exactly once� Figure � shows a graph that
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Figure � The Hamiltonian path problem with �
vertices�

has a Hamiltonian path from vin � � to vout � �� given
by the edges

�� �� �� �� �� �� �� 
� 
� �� �� �� ���

Adleman synthesized unique ���mer nucleotide tag se�
quences to give each vertex a �from� and �to� address�
For each vertex i in the graph� a random ���mer oligonu�
cleotide

Oi ���

is generated� For edge i � j in the graph� an oligonu�
cleotide

Oi�j ���

is derived from the �� ���mer of Oi and from the �� ���
mer of Oj � For each vertex i in the graph�

�Oi �
�

is the Watson�Crick complement of Oi� For example� �O�

serves as a splint to bind O��� and O��� in preparation
for ligation�

The following nondeterministic algorithm solves the
problem

�� Generate random paths through the graph�

�� Keep only those paths that begin with vin and end
with vout�

�� If the graph has n vertices� then keep only those
paths that enter exactly n vertices�


� Keep only those paths that enter all of the vertices
of the graph at least once�

�� If any paths remain� say �Yes�� otherwise� say �No��



Each path was represented by the �
��mer contain�
ing the appropriate path tags in the correct order� In
solution these single�stranded DNA molecules randomly
hybridized to their complements� forming longer strands
which were double�stranded in complementary regions�
After allowing about four hours for the strands to hy�
bridize� DNA ligase and polymerase were used to �sew
up� the strands� getting a set of DNA molecules repre�
senting all possible paths in the graph� Chemical and
physical operations were then performed to extract only
the DNA molecules which corresponded to Hamiltonian
paths from this soup�

The total number of separation and synthesis steps
required grows linearly with the size �number of vertices
and edges� of the problem� The experiment took Adle�
man about a week�

The essential steps needed for DNA computing above
can be summarized as follows

�� Encoding Determine an encoding for the problem�

�� Initialization Generate a pool of oligos�

�� Synthesis Produce candidate solutions by molecu�
lar operators�


� Separation Filter out infeasible solutions by lab
steps�

In the Adlemans experiment the encoding for oligos were
random and there were no control over the synthesis and
separation steps� One drawback of this simple molecular
algorithm is that it might propagate only bad solutions
in the synthesis step� For example� the candidates longer
than �
��mer are infeasible solutions but may continue to
hybridize to generate other infeasible solutions� Useless
reactions can be avoided by early application of separa�
tion steps� The following molecular algorithm is based
on this observation�

� A Molecular Evolutionary Al�

gorithm

We introduce an evolutionary loop into the basic molec�
ular algorithm for DNA computing� In this algorithm�
the synthesis and separation steps are respectively equiv�
alent to genetic operators and selection in genetic pro�
gramming� The molecular evolutionary process can be
summarized as follows�

�� Encoding Determine an encoding for the problem�

�� Initialization Generate a pool of oligos�

�� While �cycle c � cmax� do

�a� Synthesis Produce candidate solutions by
molecular operators�

�b� Separation Filter out infeasible solutions by
lab steps�

The procedure incorporates a while loop that iterates
the synthesis and separation steps for cmax cycles� This
molecular algorithm is more like an evolutionary algo�
rithm in the sense that the DNA pool evolves as time
goes on� Unlike usual evolutionary algorithms� the se�
lection operators are based on binary constraints� If the
constraint is satis�ed� then DNA sequences kept in the
test tube� otherwise they are �ltered out� There is no
�tness function de�ned explicitly�

We compared the performance of the simple molec�
ular algorithm �sMA� and the iterative version �iMA��
Simulations have been performed on the NACST system
for the 	�vertex HPP problem� The performance was
measured in terms of e�ciency and reliability� In simu�
lations� we use two parameters to control the bio lap ex�
periment� One is the pool size� de�ned as the number of
oligos� to determine the cost for biomaterials� The other
parameter is the reaction time� the maximum number of
reactions allowed in the synthesis step� which determines
the time for DNA computing in simulation�

The sMA algorithm was initialized with � million
oligos which undergo chemical reactions for �� million
times� The iMA was given the same number of oligos
but it iterates �� cycles of synthesis and separation steps�
One million �one tenth of the sMA� reactions take place
for each synthesis step�

In the iMA the molecules were removed from the pool
when its code starts with vin and ends with vout but the
length is shorter than the solution� Pruning was also per�
formed in the case that the sequence is longer than the
solution length� By removing infeasible molecules and
then continuing reactions� the iterative algorithm pre�
vents consuming oligos without producing feasible so�
lutions� This results in more e�ective use of resources
�oligos� and thus reduce the costs for lab experiments�

We studied the e�ect of reaction time on the reliabil�
ity of �nding solutions� The results are summarized in
Table �� For various reaction times� the iterative molecu�
lar algorithm found solutions approximately twice more
often than the simple molecular algorithm� The simple
molecular algorithm found solutions reliably only under
enough reaction time and a big size of pool�

Figure � compares the number of molecules remain�
ing in the pool as the experiment step progresses� It
can be observed that� whereas the size of oligos for sMA
is relatively large in step � and undergoes a fast reduc�
tion in step �� the size of oligos for iMA reduces by a
large amount at step � and remains almost the same
thereafter� The result is that iMA produces a larger



Table � Parameters for the simple molecular al�
gorithm�

Parameters Values
Task 	�HPP
Pool size ���������
Reaction time ����������
Max cycle �
Code length for vertex ��
Hybridization error rate ����
Ligation error rate ����

Table � Parameters for the iterative molecular
algorithm�

Parameters Values
Task 	�HPP
Pool size ���������
Reaction time ���������
Max cycle ��
Code length for vertex ��
Hybridization error rate ����
Ligation error rate ����

Table � Comparison of the simple molecular al�
gorithm 	sMA
 and the iterative molecular algo�
rithm 	iMA
 in the average number of solutions�

Code Pool Reaction Num Avg� Solutions
Length Size Time Runs sMA iMA

�� ��� ��� �� ��	� ����
�� ��� 	��� ��� �� ��
� ����
�� ��� �� ��� �� ���� ����
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Figure � Number of molecules survived each lab
step for the simple molecular algorithm�
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Figure � Number of molecules survived each
synthesis�separation cycle for the iterative molec�
ular algorithm�

number of solutions with faster convergence than sMA�
This demonstrates the e�ect of iMA to remove infeasible
solutions at an early stage�

Figure � shows the survived and erased molecules in
each iteration� The amount of survived molecules is large
at cycles � and �� after which it remains almost con�
stant� Similar phenomenon is observed for the erased
molecules�

� A Molecular Evolutionary Al�

gorithm with Code Optimiza�

tion

The main feature of the code�optimizing molecular algo�
rithm is to search for good encodings before starting the
bio experiments� Deaton et al� ��� has explored the use of
a genetic algorithm for the optimization of the encoding�
This concept is combined with the iterative molecular al�
gorithm� resulting in a molecular evolutionary algorithm
with code�optimization

�� Generate a population of encodings for the problem�

�� While �generation g � gmax� do

�a� Evaluate the �tness of each encoding�

�b� Select �tter encodings�

�c� Apply genetic operators to produce a new pop�
ulation�

�� Let the best code be the �ttest encoding�


� Initialization Generate a pool of oligos using the
best code�

�� While �cycle c � cmax� do
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Figure 
 Types of reaction error�

�a� Synthesis Produce candidate solutions by
molecular operators�

�b� Separation Filter out infeasible solutions lab�
steps�

In e�ect� the encoding step of the iterative molecular
algorithm is extended by steps � � above to generate an
optimized encoding�

To �nd good encodings we need to consider various
causes of errors� There are two main types of errors in
DNA computing� False positives are the error caused
when the algorithm produces sequences which appear
to be valid solutions� but actually are not� False nega�
tives are the answers to the problem which exist� but the
algorithm cannot �nd� These errors are caused by mis�
matches in chemical reactions� We currently consider
the following types of reaction errors as illustrated in
Figure 
�

�� Mismatched hybridization

�� Shifted hybridization

Hybridization stringency refers to the number of com�
plement base pairs that have to match for DNA oligonu�
cleotides to bind� Hybridization stringency depends on
reaction conditions� such as sodium concentration� tem�
perature� and relative percentage of A�T�s and G�C�s�
The indirect e�ect of these factors on hybridization er�
rors are not considered in the following simulations�

For solving the HPP problem� we considered three
types of errors false positive hybridiztion of verticies�
false negative hybridization of vertices� and correct hy�
bridization using illegal edges� Thus� the �tness of an
encoding are measured by estimating these possibilities�

Table 
 describes the experimental setup for DNA
computing simulations� Experiments were performed
with four varying values of code length 
� �� ��� ���
Other parameters are the same as the experiments in the
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Figure � Number of molecules survived each lab
steps� comparison of the molecular algorithm
with and without code optimization�

previous section� Table � shows the parameters used for
genetic optimization of encodings for the 	�HPP prob�
lem� An evolutionary algorithm was run with population
size of ��� for ��� generations� Crossover rate and mu�
tation rate were ��� and ��� respectively�

Figure � depicts the �tness evolution during the ge�
netic code optimization process� It can be seen that �t
encodings are found within �� generations� The relia�
bility of the encoding was veri�ed by running the DNA
computing simulator� The result of optimized encoding
and random encoding are compared in Figure �� The
graph shows the number of molecules survived each lab
step� averaged over four di�ent code lengths �n � 
� ��
��� ���� Optimized encodings produced less molecules in
steps � and �� but more molecules in steps 
 and �� thus
more solutions� than random encodings�

Table � shows examples of good �optimized� and bad
�negatively optimized� encodings found by the genetic



Table 
 Parameters for the iterative molecular
algorithm�

Parameters Value
Task 	�HPP
Pool size ���������
Reaction time ���������
Max cycle ��
Code length for vertex 
� �� ��� ��
Hybridization error rate ����
Ligation error rate ����

Table � Parameters for genetic codeword opti�
mization�

Parameter Value
Task 	�HPP
Population size ���
Max generation ���
Crossover rate ���
Mutation rate ���

Table � Number of molecules survived the lab
steps� comparison with good 	optimized
 and
bad 	negatively optimized
 encodings for n �

� �� ��� ���

n step Good encoding Bad encoding
� ���
��� �
�����
� ���� ����
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Table 	 Comparison of the molecular algorithm
with random codes and optimized codes in the
number of successful runs 	pool size����� reac�
tion time����
�

Code Num �Successful Runs

Length Runs Optimized Random

� �� �� �

� �� �� ��

�� �� �� ��

�� �� �� �

search� Listed are the encodings for code length n �

� �� ��� ���

Table � compares the number of molecules that sur�
vived each lab step� As can be seen� molecules of bad
encodings have in general a smaller number of solutions
than optimized encodings� An exception is the case of
n � � in which the random encoding has a slightly larger
number of solutions ����� vs� 
����� but the andom en�
coding used about 	 times more molecules than that of
the optimized encoding� This demonstrates the possibil�
ity of the iterative algorithm for improving the e�ciency
of compuation and usage of molecules�

� Conclusions

We presented two DNA computing algorithms that are
inspired by evolutionary algorithms� The introduction
of inner evolutionary cycle increased the e�ciency of the
DNA computing procedure� The use of outer evolution�
ary loop reduced the error rate in hybridization process
and thus improved reliability of DNA computing� Our
molecular algorithms are motivated more from the com�
puter science point of view rather than the biological
point of view� and so far we have ignored some of bio�
lab techniques which are also dependent of temperature�
sodium concentration etc�

It should be noted that the utility of the augmented
molecular algorithms in real molecular systems depends
on the types of lab techniques adopted� The simpler the
separation steps� the more useful the inner evolutionary
loop� On the other hand� if separation steps are more
time�consuming than hybridization� then the iteration
may be more expensive in time� However� in this latter
case there still exists the possibility of utility� it makes
better use of molecules since the molecular evolutionary
algorithm makes better use of the molecules than the
brute force DNA computing procedure�

We identi�ed similarities between DNA computing
and genetic programming� Both are similar in that the



Table � Good and bad encodings found by
the code�optimizing molecular algorithm� n �

� �� ��� ���

n Vertex Good Encoding Bad Encoding

� GATT AGTA
� CAGC AGAA
� TACA CAGT


 � AATA AGCC

 GCTC ACTG
� GTAC TATA
� TCCC CTTG

� TCGTGA TACTAG
� CGAATT TCCGAA
� GCCAAA ATTCGG

� � CAATTC GCTAAG

 GTCTTG AAGAAT
� GGTAAG ATTACA
� GGACGC TCCGAC

� ACGTAGCTCC GGTTCCGTGA
� TACGTCGATC ATATGCAGGC
� GTACCAATGC AAAACTGTAG

�� � CGTAGTCATG CGGTTCTCCC

 ATGCCTTCAG CGGTTGGGAA
� AGCGTATCGT ACGCTCCCAG
� CAATACTTCT TATGACGTAT

� AAAAAACATC ACATGGATCA
GGAATACATG TGCAGTGTCT

� CAGCATAAAC CGCCTTTCGT
CTGTGGAAGA AGAACTGCCG

� ATGTCGGAGT CCGTGGGCTG
TCACCTACCA GATTTTCGGA

�� � ACCACATGCG ATCGTAAGTG
GCGGGCGACA GCTACTAGCA


 GCTCACTGCT TTTAACAATG
TCGAAAGCTC AATTGAACAA

� GGTATCATCG TTTAGCGTTT
TTTGGACTGG ACAGGTGTTT

� CTTTATATCA GACTATTTGT
GGAATAAGTG TGCAGTGTCT

size of encoding is variable� The di�erence lies in that
GP has tree structures while DNA molecules has linear
structures �at least in current encodings�� Many genetic
programming researchers have faced with the problem of
bloating� the explosion of non�functional codes �	�� We
also have observed similar non�functional codes in DNA
computing� The presented molecular algorithms were
motivated from this observation and used to reduce the
bloating factor in DNA computing�

In this paper we con�ned ourselves to Adleman�style
DNA computing applied to the Hamiltonian path prob�
lem� It would be more interesting to see our molecular
algorithms solve other computational problems�
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