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ABSTRACT

Two new molecular algorithms are presented
that are designed for the improvement of effi-
ciency and reliability of DNA computing. The
first algorithm introduces an evolutionary cycle
to guide chemical reactions of DNA molecules.
The second molecular algorithm extends the first
one by adding another evolutionary loop for op-
timizing encodings of the problem instance. Just
as genetic programming is a method for pro-
gramming conventional computers by means of
natural evolution, our approach, which might be
called molecular programming, provides a method
for programming biocomputers by means of ar-
tificial evolution. Simulations have been per-
formed with the Hamiltonian path problem to
verify the positive effect of the presented molec-
ular algorithms on the reliability and efficiency
of DNA computing.

1 Introduction

Due to advances in molecular biology it is nowadays pos-
sible to create a soup of roughly 10'® DNA strands that
fits in a test tube. Adleman [1] has shown that each DNA
strand can be used to compute solutions to an instance
of the NP-complete Hamiltonian path problem (HPP).

Lipton [9] came up with using DNA computing to
solve the satisfiability (SAT) problem: given a proposi-
tional formula decide if it is satisfiable. He showed how
to use the same primitive DNA operations as Adleman
to solve any SAT problem with N binary inputs and G
logical gates (AND, OR, or NOT), in a number of oper-
ations depending linearly on N + G.
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In DNA computing two parameters are considered.
One is the time 7 required for separation of molecules.
The other is the accuracy, i.e. the error rate of a sepa-
ration. In a real system separation will not be perfect,
there will be errors of false positives and false negatives.
It is also possible that in real systems the time and ac-
curacy of a separation may depend on the tube and en-
codings being considered.

From the computer science point of view there are
several points of improvements in the Adleman and Lip-
ton constructions. Since ordinary sequential computers
are not restricted to using naive brute force algorithms
to solve NP-complete problems such as HPP and SAT.
Instead, they can use clever algorithms, which, while
still exponential, tend in practice to have much smaller
growth constants than the naive algorithm.

Another point is the encoding of problem instances
for DNA computing. Both Adleman and Lipton used
random encodings in their study. It was, however, sug-
gested that as the size of the problem grows, particular
attention must be paid to errors and the formation of
pseudopaths. Deaton et al. [3, 5] have identified various
types of errors that lead to false positives in Adleman’s
original techniques. They also gave a theoretical bound
on the size of problems that can be solved reliably and
used genetic search for good encodings. Garzon et al.
[6] introduced a new measure of hybridization likelihood
and proposed a theory of error-preventing codes for DNA
computing.

Motivated by the work of Deaton and Garzon we in-
vestigate in this paper methods for further improvement
of the efficiency and robustness of DNA computing. We
introduce two variants of molecular algorithms used in
the Adleman’s original experiment. The algorithms are
inspired by genetic programming. Just as genetic pro-
gramming is a method for programming “digital” com-



puters by means of “natural” evolution, our approach,
which might be called molecular programming, provides
a method for programming “biocomputers” by means
of “artificial” evolution. Genetic programming is based
on tree-structured representations while molecular pro-
gramming uses double strands of DNA sequences. Just
as trees are natural representations for conventional dig-
ital computers, DNA molecules are natural representa-
tions for biocomputers. The operators in genetic pro-
gramming are inspired by natural systems, whereas the
operators in molecular programming are inspired by ar-
tificial systems.

The first molecular programming algorithm we stud-
ied is an “evolutionary” version of simple DNA com-
puting. Instead of brute force search, the algorithm
“evolves” molecules by iterating synthesis and separa-
tion steps. The second molecular algorithm is an ex-
tended version of the first algorithm that has another
evolutionary loop outside the molecular evolution cycle.
This outer genetic search optimizes DNA encodings for
representing problem instances. It should be noted that
our approach is different from that of Deaton at al. [4].
While they focuse on implementing a genetic algorithm
by making use of mismatches in chemical reactions, we
attempt to predict and minimize such mismatches to
make DNA computing more efficient and reliable.

The effectiveness of the proposed algorithms is shown
on the Adleman’s graph for the 7-city Hamiltonian path
problem. Our simulation results using the NACST (Nu-
cleic Acid Computing Simulation Toolbox) system which
are being developed in the SCATI Lab at Seoul National
University indicate that the Adleman’s encoding scheme
with random 20-mers are effective from biological point
of view, but are inefficient from the computing point of
view. Our simulations suggest that there exist shorter
encodings that can effectively solve the 7-HPP problem.

The paper is organized as follows. In Section 2 we
describe the basic molecular algorithm for the Adleman-
style DNA computing. Sections 3 and 4 present two
new molecular algorithms and their experimental results
on the improvement of reliability and efficiency of DNA
computing. Section 5 summarizes our findings from this
study and suggests further work.

2 Adleman-Style DNA Comput-
ing

Adleman [1] showed how to use molecules of DNA to
solve an instance of the Hamiltonian path problem in a
test tube using standard methods of molecular biology.
Given a set of 7 vertices with some interconnecting (di-
rected) paths, the problem is to find a path which visits
each vertex exactly once. Figure 1 shows a graph that
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Figure 1: The Hamiltonian path problem with 7
vertices.

has a Hamiltonian path from v;;, = 0 to vyt = 6, given
by the edges

0—-1,1—-2, 23, 3—>4,4—5,5—6. (1)

Adleman synthesized unique 20-mer nucleotide tag se-
quences to give each vertex a “from” and “to” address.
For each vertex 7 in the graph, a random 20-mer oligonu-
cleotide

O; (2)

is generated. For edge i — j in the graph, an oligonu-
cleotide

Oi—; (3)

is derived from the 3’ 10-mer of O; and from the 5’ 10-
mer of O;. For each vertex ¢ in the graph,

O; (4)

is the Watson-Crick complement of O;. For example, Os
serves as a splint to bind O4_,5 and Os_,¢ in preparation
for ligation.

The following nondeterministic algorithm solves the
problem:

1. Generate random paths through the graph.

2. Keep only those paths that begin with v;, and end
with Vout -

3. If the graph has n vertices, then keep only those
paths that enter exactly n vertices.

4. Keep only those paths that enter all of the vertices
of the graph at least once.

5. If any paths remain, say “Yes”; otherwise, say “No.”



Each path was represented by the 140-mer contain-
ing the appropriate path tags in the correct order. In
solution these single-stranded DNA molecules randomly
hybridized to their complements, forming longer strands
which were double-stranded in complementary regions.
After allowing about four hours for the strands to hy-
bridize, DNA ligase and polymerase were used to “sew
up” the strands, getting a set of DNA molecules repre-
senting all possible paths in the graph. Chemical and
physical operations were then performed to extract only
the DNA molecules which corresponded to Hamiltonian
paths from this soup.

The total number of separation and synthesis steps
required grows linearly with the size (number of vertices
and edges) of the problem. The experiment took Adle-
man about a week.

The essential steps needed for DNA computing above
can be summarized as follows:

1. Encoding: Determine an encoding for the problem.
2. Initialization: Generate a pool of oligos.

3. Synthesis: Produce candidate solutions by molecu-
lar operators.

4. Separation: Filter out infeasible solutions by lab
steps.

In the Adlemans experiment the encoding for oligos were
random and there were no control over the synthesis and
separation steps. One drawback of this simple molecular
algorithm is that it might propagate only bad solutions
in the synthesis step. For example, the candidates longer
than 140-mer are infeasible solutions but may continue to
hybridize to generate other infeasible solutions. Useless
reactions can be avoided by early application of separa-
tion steps. The following molecular algorithm is based
on this observation.

3 A Molecular Evolutionary Al-
gorithm

We introduce an evolutionary loop into the basic molec-
ular algorithm for DNA computing. In this algorithm,
the synthesis and separation steps are respectively equiv-
alent to genetic operators and selection in genetic pro-
gramming. The molecular evolutionary process can be
summarized as follows.

1. Encoding: Determine an encoding for the problem.
2. Initialization: Generate a pool of oligos.

3. While (cycle ¢ < ¢pmqe) do

(a) Synthesis: Produce candidate solutions by
molecular operators.

(b) Separation: Filter out infeasible solutions by
lab steps.

The procedure incorporates a while loop that iterates
the synthesis and separation steps for ¢;,q, cycles. This
molecular algorithm is more like an evolutionary algo-
rithm in the sense that the DNA pool evolves as time
goes on. Unlike usual evolutionary algorithms, the se-
lection operators are based on binary constraints. If the
constraint is satisfied, then DNA sequences kept in the
test tube, otherwise they are filtered out. There is no
fitness function defined explicitly.

We compared the performance of the simple molec-
ular algorithm (sMA) and the iterative version (iMA).
Simulations have been performed on the NACST system
for the 7-vertex HPP problem. The performance was
measured in terms of efficiency and reliability. In simu-
lations, we use two parameters to control the bio lap ex-
periment. One is the pool size, defined as the number of
oligos, to determine the cost for biomaterials. The other
parameter is the reaction time, the maximum number of
reactions allowed in the synthesis step, which determines
the time for DNA computing in simulation.

The sMA algorithm was initialized with 1 million
oligos which undergo chemical reactions for 10 million
times. The iMA was given the same number of oligos
but it iterates 10 cycles of synthesis and separation steps.
One million (one tenth of the sSMA) reactions take place
for each synthesis step.

In the iMA the molecules were removed from the pool
when its code starts with v;,, and ends with v,,; but the
length is shorter than the solution. Pruning was also per-
formed in the case that the sequence is longer than the
solution length. By removing infeasible molecules and
then continuing reactions, the iterative algorithm pre-
vents consuming oligos without producing feasible so-
lutions. This results in more effective use of resources
(oligos) and thus reduce the costs for lab experiments.

We studied the effect of reaction time on the reliabil-
ity of finding solutions. The results are summarized in
Table 3. For various reaction times, the iterative molecu-
lar algorithm found solutions approximately twice more
often than the simple molecular algorithm. The simple
molecular algorithm found solutions reliably only under
enough reaction time and a big size of pool.

Figure 2 compares the number of molecules remain-
ing in the pool as the experiment step progresses. It
can be observed that, whereas the size of oligos for sMA
is relatively large in step 2 and undergoes a fast reduc-
tion in step 3, the size of oligos for iMA reduces by a
large amount at step 2 and remains almost the same
thereafter. The result is that iMA produces a larger



Table 1: Parameters for the simple molecular al-
gorithm.

Parameters Values
Task 7-HPP
Pool size 1,000,000
Reaction time 10,000,000
Max cycle 1
Code length for vertex 10
Hybridization error rate 0.01
Ligation error rate 0.01

Table 2: Parameters for the iterative molecular
algorithm.

Parameters Values
Task 7-HPP
Pool size 1,000,000
Reaction time 1,000,000
Max cycle 10
Code length for vertex 10
Hybridization error rate 0.01
Ligation error rate 0.01

Table 3: Comparison of the simple molecular al-
gorithm (sMA) and the iterative molecular algo-
rithm (iMA) in the average number of solutions.

Code | Pool | Reaction | Num || Avg# Solutions

Length | Size Time Runs || sMA iMA
20 108 107 20 1.70 3.10
20 108 | 7.5 x 10° 20 1.40 2.20
20 108 5 x 106 20 1.10 1.80
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Figure 2: Number of molecules survived each lab
step for the simple molecular algorithm.
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Figure 3: Number of molecules survived each
synthesis-separation cycle for the iterative molec-
ular algorithm.

number of solutions with faster convergence than sMA.
This demonstrates the effect of iMA to remove infeasible
solutions at an early stage.

Figure 3 shows the survived and erased molecules in
each iteration. The amount of survived molecules is large
at cycles 0 and 1, after which it remains almost con-
stant. Similar phenomenon is observed for the erased
molecules.

4 A Molecular Evolutionary Al-
gorithm with Code Optimiza-
tion

The main feature of the code-optimizing molecular algo-

rithm is to search for good encodings before starting the

bio experiments. Deaton et al. [3] has explored the use of

a genetic algorithm for the optimization of the encoding.

This concept is combined with the iterative molecular al-

gorithm, resulting in a molecular evolutionary algorithm
with code-optimization:

1. Generate a population of encodings for the problem.
2. While (generation g < gmaz) do

(a) Evaluate the fitness of each encoding.
(b) Select fitter encodings.

(c) Apply genetic operators to produce a new pop-
ulation.

3. Let the best code be the fittest encoding.

4. Initialization: Generate a pool of oligos using the
best code.

5. While (cycle ¢ < ¢pqz) do
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Figure 4: Types of reaction error.

(a) Synthesis: Produce candidate solutions by
molecular operators.

(b) Separation: Filter out infeasible solutions lab-
steps.

In effect, the encoding step of the iterative molecular
algorithm is extended by steps 1-3 above to generate an
optimized encoding.

To find good encodings we need to consider various
causes of errors. There are two main types of errors in
DNA computing. False positives are the error caused
when the algorithm produces sequences which appear
to be valid solutions, but actually are not. False nega-
tives are the answers to the problem which exist, but the
algorithm cannot find. These errors are caused by mis-
matches in chemical reactions. We currently consider
the following types of reaction errors as illustrated in
Figure 4.

1. Mismatched hybridization
2. Shifted hybridization

Hybridization stringency refers to the number of com-
plement base pairs that have to match for DNA oligonu-
cleotides to bind. Hybridization stringency depends on
reaction conditions, such as sodium concentration, tem-
perature, and relative percentage of A+T’s and G+C'’s.
The indirect effect of these factors on hybridization er-
rors are not considered in the following simulations.

For solving the HPP problem, we considered three
types of errors: false positive hybridiztion of verticies,
false negative hybridization of vertices, and correct hy-
bridization using illegal edges. Thus, the fitness of an
encoding are measured by estimating these possibilities.

Table 4 describes the experimental setup for DNA
computing simulations. Experiments were performed
with four varying values of code length: 4, 6, 10, 20.
Other parameters are the same as the experiments in the
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Figure 5: Fitness vs. generation for genetic code
optimization.
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Figure 6: Number of molecules survived each lab
steps: comparison of the molecular algorithm
with and without code optimization.

previous section. Table 5 shows the parameters used for
genetic optimization of encodings for the 7-HPP prob-
lem. An evolutionary algorithm was run with population
size of 100 for 100 generations. Crossover rate and mu-
tation rate were 0.5 and 0.1 respectively.

Figure 5 depicts the fitness evolution during the ge-
netic code optimization process. It can be seen that fit
encodings are found within 10 generations. The relia-
bility of the encoding was verified by running the DNA
computing simulator. The result of optimized encoding
and random encoding are compared in Figure 6. The
graph shows the number of molecules survived each lab
step, averaged over four diffent code lengths (n = 4, 6,
10, 20). Optimized encodings produced less molecules in
steps 2 and 3, but more molecules in steps 4 and 5, thus
more solutions, than random encodings.

Table 8 shows examples of good (optimized) and bad
(negatively optimized) encodings found by the genetic



Table 4: Parameters for the iterative molecular
algorithm.

Parameters Value
Task 7-HPP
Pool size 1,000,000
Reaction time 1,000,000
Max cycle 10
Code length for vertex 4, 6, 10, 20
Hybridization error rate 0.01
Ligation error rate 0.01

Table 5: Parameters for genetic codeword opti-
mization.

Parameter Value
Task 7-HPP
Population size 100
Max generation 100
Crossover rate 0.5
Mutation rate 0.1

Table 6: Number of molecules survived the lab
steps: comparison with good (optimized) and
bad (negatively optimized) encodings for n =

4,6,10, 20.

n | step Good encoding Bad encoding
1 2504.59 2436.29
2 8.93 0.95
4 3 8.44 0.33
4 3.81 0.00
5 3.81 0.00
1 2506.60 2468.10
2 9.04 59.57
6 3 8.72 56.86
4 3.92 4.38
5 3.92 4.38
1 2515.00 2161.15
2 9.95 17.55
10 3 8.95 16.75
4 4.05 2.70
5 4.05 2.70
1 2526.60 2534.95
2 8.70 2.73
20 3 7.55 1.95
4 3.10 0.50
5 3.10 0.50

Table 7: Comparison of the molecular algorithm
with random codes and optimized codes in the
number of successful runs (pool size=10%, reac-
tion time=107).

Code Num #Successful Runs
Length Runs Optimized Random
4 20 20 0
6 20 20 20
10 20 20 19
20 20 20 9

search. Listed are the encodings for code length n =
4,6,10,20.

Table 6 compares the number of molecules that sur-
vived each lab step. As can be seen, molecules of bad
encodings have in general a smaller number of solutions
than optimized encodings. An exception is the case of
n = 6 in which the random encoding has a slightly larger
number of solutions (3.92 vs. 4.38), but the andom en-
coding used about 7 times more molecules than that of
the optimized encoding. This demonstrates the possibil-
ity of the iterative algorithm for improving the efficiency
of compuation and usage of molecules.

5 Conclusions

We presented two DNA computing algorithms that are
inspired by evolutionary algorithms. The introduction
of inner evolutionary cycle increased the efficiency of the
DNA computing procedure. The use of outer evolution-
ary loop reduced the error rate in hybridization process
and thus improved reliability of DNA computing. Our
molecular algorithms are motivated more from the com-
puter science point of view rather than the biological
point of view, and so far we have ignored some of bio-
lab techniques which are also dependent of temperature,
sodium concentration etc.

It should be noted that the utility of the augmented
molecular algorithms in real molecular systems depends
on the types of lab techniques adopted. The simpler the
separation steps, the more useful the inner evolutionary
loop. On the other hand, if separation steps are more
time-consuming than hybridization, then the iteration
may be more expensive in time. However, in this latter
case there still exists the possibility of utility; it makes
better use of molecules since the molecular evolutionary
algorithm makes better use of the molecules than the
brute force DNA computing procedure.

We identified similarities between DNA computing
and genetic programming. Both are similar in that the



Table 8: Good and bad encodings found by
the code-optimizing molecular algorithm: n =
4,6,10, 20.

n | Vertex Good Encoding Bad Encoding
0 GATT AGTA
1 CAGC AGAA
2 TACA CAGT
4 3 AATA AGCC
4 GCTC ACTG
5 GTAC TATA
6 TCCC CTTG
0 TCGTGA TACTAG
1 CGAATT TCCGAA
2 GCCAAA ATTCGG
6 3 CAATTC GCTAAG
4 GTCTTG AAGAAT
5 GGTAAG ATTACA
6 GGACGC TCCGAC
0 ACGTAGCTCC | GGTTCCGTGA
1 TACGTCGATC | ATATGCAGGC
2 GTACCAATGC | AAAACTGTAG
10 3 CGTAGTCATG | CGGTTCTCCC
4 ATGCCTTCAG | CGGTTGGGAA
5 AGCGTATCGT | ACGCTCCCAG
6 CAATACTTCT | TATGACGTAT
0 AAAAAACATC | ACATGGATCA
GGAATACATG | TGCAGTGTCT
1 CAGCATAAAC | CGCCTTTCGT
CTGTGGAAGA | AGAACTGCCG
2 ATGTCGGAGT | CCGTGGGCTG
TCACCTACCA | GATTTTCGGA
20 3 ACCACATGCG | ATCGTAAGTG
GCGGGCGACA | GCTACTAGCA
4 GCTCACTGCT | TTTAACAATG
TCGAAAGCTC | AATTGAACAA
5 GGTATCATCG | TTTAGCGTTT
TTTGGACTGG | ACAGGTGTTT
6 CTTTATATCA | GACTATTTGT
GGAATAAGTG | TGCAGTGTCT

size of encoding is variable. The difference lies in that
GP has tree structures while DNA molecules has linear
structures (at least in current encodings). Many genetic
programming researchers have faced with the problem of
bloating, the explosion of non-functional codes [7]. We
also have observed similar non-functional codes in DNA
computing. The presented molecular algorithms were
motivated from this observation and used to reduce the
bloating factor in DNA computing.

In this paper we confined ourselves to Adleman-style
DNA computing applied to the Hamiltonian path prob-
lem. It would be more interesting to see our molecular
algorithms solve other computational problems.
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