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ABSTRACT 

This paper introduces two data partitioning methods for 
building mixtures of several neural networks. The methods 
are based on active learning with two different selection mea­
sures. One is the redundant data selection (RDS) method 
whiCh chooses examples with less error, and the other is the 
critical data selection (CDS) method which chooses examples 
with larger error. The partitioned data sets are used to train 
the experts which are then combined by a weighted majority 
algorithm to produce final outputs. Experiments have been 
performed on two data sets from the UCI machine learning 
database. The results show that CDS outperforms both RDS 
and random selection in generalization ability. We also sug­
gest a promising way to use the data subsets partitioned by 
RDS. 
KEYWORDS: data partitioning, active learning, 
mixture of experts 

I. Introduction 

It has been shown that if a problem domain can be di­
vided into several subtasks, the overall performance can be 
enhanced by an effective combination of expert neural net­
works. Hampshire (1] described a system of this kind that 
can be used when the division into subtasks is known prior 
to training. Jacobs (3] have described a related system that 
learns how to allocate cases to experts. Igor (2] and Shadafan 
(6] suggest data partitioning algorithms to separate the en­
tire training data into several subsets by its characteristics. 
In (2], a correlation coefficient matrix per every input data 
should be maintained and 200 expert networks are required 
for the partitioning. In (6], three types of matrix operations 
per every input data and additional large data structures per 
node are required for the partitioning. Although these al­
gorithms are good at partitioning the training data set into 
subsets with different characteristics, they require large com­
putational cost. 
In this paper we present new data partitioning methods. The 
methods are based on the active learning paradigm in which 
the learner actively selects new training examples incremen­
tally during learning (8, 9]. It has been shown that the aCtive 
learning can estimate the global distribution using a small 
portion of the whole data set (8]. The basic idea in the present 
paper is that the active data selection algorithm can also be 
used to partition the entire data into sebsets for effective con­
struction of mixture models. The method is applied to the 
problems in the UCI machine learning database. Our ex­
periments show that this kind of mixtures can enhance the 
performance if the predictions of each experts are properly 
combined. 
The organization of this paper is as follows. Section 2 
presents new data partitioning methods. Section 3 describes 
the mixture model to build an ensemble network using the 

partitioned subsets. Section 4 reports experimental results. 
Section 5 draws conclusions and discusses future work. 

2. Active Partitioning of Training Data 
Conventional neural network algorithms assume that the 
training data are given from the environment or an exter­
nal oracle. Thus, the learning is focused on the adjustment 
of the learner's free parameters. On the other hand, sev­
eral researchers have studied the active learning paradigm in 
which the learner selects training examples actively from its 
environment (5, 4, 8, 9]. 
Active learning can be used to find a subset that is as small as 
possible and at the same time contains as much information 
as possible. Zhang [8] defines the example causing maximum 
error for the current trained network as the most critical. 
That is, the criticality is proportional to the mean error and 
computed by the current traiued neural network (W, A): 

1 
em(s) = dim(ym)IIYm- f(xm;W,A)jj, 

where (xm,Ym) is the m-th training pattern, f is the output 
of the network with weights W and architecture A a::J.d s is 
the number of selection. An example with a maximum error 
em is selected from the candidate set c.: 

m· = argmax(em(s)). 
mEG 

This scheme tends to sequentially select examples that rep­
resent the global distribution of the candidate set. In this 
paper, we call the above selection scheme as critical data 
selection (CDS). The data partitioning occurs when the se­
lected data is sequentially accumulated for a fixed period. 
The resulting subsets approximate the global distribution of 
the whole data. 
Another possibility of data partitioning using active learn­
ing is to select examples with minimum errors, rather than 
maximum errors: 

m· = argmin(em(s)) 
mEG 

This method prefers to select examples that are similar to the 
already selected examples, thus representing local regions of 
the example space. This kind of selection scheme will be 
referred to as redundant data selection (RDS). The active 
data partitioning algorithm can be described as follows. 

Step 0. Initialize the candidate set C, class number k, se­
lection step i, and newly selected data set Dnew= 
C +- initial candidate set, 
k f- 1, i f- 1, Dnew f- 0. 

Step 1. Initialize the training set D and network architec­
ture A: 
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1: Partitioning points during the active learning. First 
of the network at the 3550th epoch is the starting 

for the new partitioning. 

D +-- one example of class k, 
A +-- single hidden node. 

Train the network A for ma.xi.mum number of 
epochs or until Et(W;A,D) < Emin, where 
Et(W; A, D) is the training error and Emin is the 
desired training error level. 

3. If Et(W; A, D) :2: Emin, then go to step 5. 

4. If ICI =0, goto step 6, 
else select examples m" from C and 
D +-- D U (Xm•, Ym• ), Dnew +-- Dnew U (Xm• 1 Ym• ), 
then got step 2. 

Grow the network A and set the i-th new partition 
S; +-- Dnew· 
Dnew +-- 0, i +-- i + 1. 

If k :2: Ncla••, then stop, else k +-- k + 1 and goto 
step 1. 

1 shows the learning curve of the described algorithm. 
shows that the architecture grows at the 3550th 

and step 5 in the described algorithm is performed at 
That is, the selected data Dnew is stored as a new 
subset, and then another new partitioning session 

at this point. As shown in Figure 3 in the next page, 
2 data set is designed to have three clusters, but the 

partition algorithm partitioned it into two partitions, 
is more acceptable when considering the distribution 

1. 

Building a Committee Using Partitioned 
Data · 

II!Em<Ltic diagram of the overall committee system is 
2. The data set is partitioned into sub­

the active network which are stored in the data 
partitioning is performed by CDS, each expert is 
a randomly selected subset from the data pool. 

prediction is computed by combining all the pre­
of experts. 

used for partitioning, the partitioned data sets in 
are randomly selected by each expert and then the 

___....,. Partitioning 
--c>- Selection 
~Split 

~ Testinput 
~ Expert output 

Training Data 

Figure 2: Schematic diagram of the committee system. The 
active network partitions the training data set into several 
subsets. Each expert is trained with a random pair of the 
sets in the partitioned data pool. Given an input, each expert 
makes a decision and their results are combined by the master 
network to produce the final output. 

training begins. On training, the selected data set is par­
titioned again into two subsets if Emin is not reached after 
sufficient training. This subparlitioning process is useful to 
make each expert as simple as possible. Since the trained 
expert learns only a portion of the entire space, this expert 
is a kind of local expert [3]. 
There are several candidates for the master algorithm. This 
paper considers the weighted majority (WM) algorithm only, 
which is widely used in the mixture models. The weighted 
majority algorithm makes predictions by taking a weighted 
vote among the experts and learns by altering the weights 
associated with each expert's prediction. In the weighted 
majority algorithm, an expert's weight is updated when it 
predicts incorrect output. That is, 

where f3 is a decaying factor, y;(xi) denotes the prediction 
of i-th expert given input xi and y( xi) is the desired output 
given Xj. 

4. Experimental Results and Analysis 
The active partitioning method was applied to three data 
sets: one artificial data set and two real-world data sets from 

Table 1: The generalization performance of experts trained 
with the partitioned sets by RDS and CDS, respectively. 
(SNN: single neural networks trained with all the training 
data.) 

Generalization performance 
Expert ~NN 

RDS 57.5 I 66.3 I 73.8 1 82.6 98.3 
CDS 96.33 I 94.50 I 96.66 1 95.94 98.3 
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Figure 3: The artificial data and its selection order by RDS. 
Each point denotes an example. The link indicates the selec­
tion sequence. The algorithm partitioned the entire data set 
into 4 clusters, two for each class. 

the UCI machine learning database. The artificial data is 
used to test whether RDS performs local data partitioning, 
i.e. each subset contains only local information of the prob­
lem space. The two real-world data sets are used to analyze 
the difference of RDS, CDS, and random selection schemes. 

4.1. Artificial Data 

This is a binary classification problem with two dimensional 
inputs. As shown in Figure 3, the layout of the patterns 
looks like the XOR problem but more complex. This prob­
lem is originally designed to have 6 clusters, three for each 
class. When the active partitioning method was applied to 
this data set, the data was partitioned into two clusters per 
class. 
Figure 3 shows the selection process of RDS. In Figure 3, 
we can see that RDS selects the data first in one local area, 
then sequentially moves to another area. Figure 4 compares 
the distributions of 100 examples selected by RDS and CDS, 
respectively. While CDS tends to globally select examples, 
RDS prefers to select local examples. Table 1 compares the 
generalization performance of the experts which are trained 
by the subsets partitioned by RDS and CDS, respectively. 
The CDS experts have better generalization accuracies and 
their variances are smaller than RDS experts. This result 
suggests that the experts formed by RDS have the character­
istics of local experts and the experts made by CDS have the 
characteristics of global experts. 

4.2. Real-World Data 

We also performed experiments on two real-world data sets. 
One is the australian credit card data set, another is the dia­
betes data set. The diabetes data set contains 500 examples 
of class 1 and 268 of class 2. Each example Contains eight 
attributes. The australian credit card assessment problem 
contains 690 cases in total. The output has two classes. The 
14 attributes include six numeric values and eight discrete 
ones. The reported classification performances of various re­
searches [7] for these two problem are compared with the mix­
ture models. Table 2 summaries the results. The credit card 
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Figure 4: Comparison of the distributions of 100 examples 
selected by RDS and CDS for the data set shown in Figure 
3. It is observed that RDS selects the examples first in one 
region and then another, while CDS selects examples jumping 
from region to region. 

data was partitioned into 15 subsets and the diabetes data 
into 35. The subpartitioning process is applied to these prob­
lems. The number of hidden nodes of each expert is limited 
to one. Table 3 compares the generalization performances of 
three methods on the credit card problem. The values are 
the result of 100 runs for each experiment. RDS did worse 
than random selection. CDS is competitive to random selec­
tion in the mean values but better in the max values. An 
interesting feature of CDS is that its performance was not 
affected .by the number of experts. This means that CDS 
represents the distribution of the problem space better than 
RDS and random selection. Table 4 shows the results for 
the diabetes problem. In the diabetes problem, the effect is 
more eminent, and a graphical comparison is given in Figure 
5. Table 2 compares the results of CDS with those of other 
researchers [7] on the two problems. It can be that CDS leads 
to the best generalization performance except EPNet. The 
poor performance by RDS seems due to the large variance 
of generalization performances of experts. The variances for 
the three partitioning methods are: 

O"~DS > O"~andom > ubvs 

We think that the gating network [3] is a better candidate 
for RDS as a combination method. 

Table 2: Comparison of various algorithms in terms of gen­
eralization performance on the two problem domains. The 
performance values for other methods are from Yao [7]. 
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Table 3: Comparison of generalization performance for the 
credit card problem. The weighted majority algorithm seems 
to be a bad choice for the experts trained with the RDS 
partitioning method. 

Number of Redundant Selection (RDS) 
Experts Mean Std Dev Max 

3 81.97 4.10 85.67 
7 84.63 2.00 87.87 
10 84.73 1.51 87.13 
13 84.75 0.74 86.11 

Number of Critical Selection (CDS) 
Experts Mean Std Dev Max 

3 85.38 0.69 87.28 
7 86.36 0.56 87.57 
10 86.45 0.43 87.43 
13 86.96 0.48 87.72 

Number of Random Selection 
Experts Mean Std Dev Max 

3 85.61 0.72 86.99 
7 86.13 0.54 87.43 
10 86.12 0.49 87.57 
13 86.15 0.27 86.70 

5. Conclusions and Future Work 
This paper presented new data partitioning methods based 
on a.Ctive learning. They include CDS which selects the data 
with maximum error and RDS which selects the data with 
minimal error. We show that subsets generated by RDS are 
useful for building local experts and the data subsets pro­
duced by CDS are useful for global experts. The experiment 
shows that the suggested data partitioning methods can be 
differently used to produce an enhanced generalization per­
bmance using a different mixture model. It should be noted 
that partitioning methods are closely related to combination 
methods of the experts. The weighted majority algorithm 
was used in this paper. This algorithm seems useful when 
the variance of the generalization performances of the ex­
perts is not large, as is the case for CDS partitioning. RDS 
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Table 4: Comparison of generalization performances for the 
diabetes problem. 

Number of Redundant Selection (RDS) 
Experts Mean Std Dev Max 

5 69.23 7.19 76.13 
15 65.32 6.22 75.42 
25 65.36 4.25 72.55 
30 65.67 3.51 70.88 

Number of Critical Selection (CDS) 
Experts Mean _s_td Dev Max 

5 71.64 5.72 79.95 
15 73.89 2.39 79.71 
25 75.11 1.76 79.00 
30 75.60 1.39 79.00 

Number of Random Selection 
Experts Mean Std Dev Max 

5 72.27 3.23 78.04 
15 73.55 2.50 79.00 
25 74.03 1.38 77.33 
30 74.34 0.81 77.09 

produces local data sets which make local experts. Future 
work includes finding a good measure for the effective com­
bination of local experts. 
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