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the center of mass velocity is not available from the simple
sensors, and it is difficult to design the high level controller
without proper analytic model.

We solve both design problems by learning an appropri-
ate controller using training examples [9]. We use a rein-
forcement learning (RL) algorithm which finds the optimal
mapping from a simplified state space to recovery actions
that maximizes a predetermined reward function over time.
Controllers are trained using repeated trials to maximize the
stability of the robot under external disturbances. Another
advantage of this approach is that as it can use a full-
body humanoid model or even the physical robot to learn
the controller, it has potential to learn better controller than
analytic approaches assuming simplified models.

This paper is organized as follows. Section II introduces
the three low level push recovery actions and explains how
we implement them on a humanoid robot with position
controlled actuators. Section III explains the high level
controller that modulates the low level push recovery ac-
tions, and how the machine learning optimization problem
is defined. Section IV addresses the learning of the full
push recovery controller from experience in a simulated
environment, and Section V shows the experimental results
when the trained push recovery controller is implemented
on a small humanoid robot. Finally, we conclude with some
potential issues and future directions arising from this work.

II. BIOMECHANICALLY MOTIVATED PUSH RECOVERY
CONTROLLERS FOR HUMANOID ROBOTS

Biomechanical studies show that human beings display
three distinctive motion patterns in response to a sudden
external perturbation, which we will denote as ankle, hip
and step recovery strategies. In this section, we will introduce
each of the three push recovery actions in detail, and explain
how these push recovery strategies can be implemented on
a humanoid robot with position-controlled actuators.

A. Ankle Controller

The ankle controller is a push recovery strategy which
keeps the center of mass (CoM) within the base of support
(BoS) by applying control torque on ankle joints. It can be
implemented by using a simple p-control on ankle torque,
but it cannot be directly implemented on generic robots
without torque controlled actuators. One option is controlling
the target position of ankle actuators [10]. However we
have found this approach has some practical limitations
as the feet of small humanoid robots tend to get tipped
under disturbance, rendering the direct control of ankle less
effective.

Instead, we take the indirect approach of controlling the
zero moment point (ZMP) by adding an auxiliary zero
moment point (ZMP) paux that can be controlled in real time
to augment the reference ZMP trajectory pre f as in [11], [12].

ZMPtarget = pre f + paux (1)

If we assume the linear inverse pendulum model (LIPM)
and walk controller that controls the movement of CoM so
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Fig. 2. Three biomechanically motivated push recovery controllers for a
position controlled humanoid robot: a) ankle controller, b) hip controller, c)
step controller

that the actual ZMP of the robot follows the target ZMP
trajectory, the effective inertia force applied on the torso is

f =�Mg
z0

paux; (2)

where M is the mass of torso, g the gravity constant, and z0
is the height of CoM. This corresponds to an effective ankle
torque of

τankle = Mgpaux (3)

In this manner, we can indirectly implement the ankle
recovery strategy by controlling the auxiliary ZMP paux,
given a ZMP based walk controller.

2048



2049





Fig. 6. Push recovery behavior during walking by a DARwIn-HP robot.
The robot was set to walk in place and then pushed from behind.

We do not use arm motions for the hip recovery strategy on
the physical robot, as repeated falls during the experimental
trials tend to break the arm servos if powered on.

B. Results

Figure 6 shows the push recovery behavior the robot
displays during walking1. We can see that the push recovery
trained using the simulator works without modification on
the physical robot. It can also be clearly seen that the robot
can withstand larger perturbations with the push recovery
controllers than without them during walking.

VI. CONCLUSIONS

We have proposed a practical method to implement a
full body push recovery controller on a general humanoid
robot without specialized sensors and actuators. Three types
of biomechanically motivated push recovery behaviors are
implemented by low level controllers, which are modulated
by a high level controller based on inertial and proprioceptive
sensory inputs. The hierarchical controller is trained using
reinforcement learning to improve the push recovery perfor-
mance, and the learned parameters can be used in both the
simulation environment as well as on a physical humanoid
robot.

Our approach has a number of advantages over previous
approaches. As it is based on a number of well-motivated
simpler push recovery actions, it does not require high
processing power or specialized hardware with triaxial force
sensors and torque controlled actuators. Yet it is capable
of performing a combination of push recovery strategies
based upon the current state of the robot, without a precise
dynamical model of the environment.

1http://www.youtube.com/watch?v=fhTa4wTUN-o

Future work includes incorporating more efficient learning
algorithms, using perception to anticipate uneven terrains,
and applying these recovery strategies to more complex
dynamical motions.
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