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Abstract. Convolutional neural networks are known to be effective in learning 

complex image classification tasks. However, how to design the architecture or com-
plexity of the network structure requires a more quantitative analysis of the architec-
ture design. In this paper, we study the effect of model complexity on generalization 
capability of the convolutional neural networks on large-scale, real-life digit recogni-
tion data. We used the digit images of the MNIST dataset to train the neural networks 
and evaluated their performance on a test set of unobserved images. Using the LeNet 
software tool we varied the number of hidden layers and the number of units in the 
layers to evaluate the effect of model complexity on the generalization capability of 
the convolutional neural networks. In our experimental settings, we observe robust 
generalization performances of the convolutional neural networks on a wide range of 
model complexities. We analyze and discuss how the convolution layer and the sub-
sampling layer may contribute to the generalization performance. 
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1. Introduction 
 

Computers solve many problems well if programmed appropriately by human pro-
grammers. However, some artificial intelligence problems, such as image and speech 
analysis, are hard to program the computers to solve. In this case, machine learning 
offers new possibilities since it allows to automatically build a program from data, i.e. 
by repeatedly observing humans solving the problem. An important issue in machine 
learning is how to control the complexity of the model: if the model is too simple, it 
cannot learn the data, whereas too complex models may overfit the data.  

Convolutional neural networks are especially interesting as a machine learning 
model since they can learn complex patterns in real-life data sets, such as images. 
However, the design of the network structure, i.e. the number of layers and the num-
ber of units in the layers, remain an art. In this paper we aim to understand the rela-
tionship between the complexity of the network model and its generalization perfor-
mance by exploring the architecture space experimentally. Our vision is to build a 



deep neural network that can learn to recognize human faces as more human faces are 
observed. In this first stage of our research, in this paper we experiment with the 
MNIST benchmark data sets.  

The paper is organized as follows. In Section 2 we describe architecture and learn-
ing method of the convolutional neural network. In Section 3 we describe the data set 
and our experimental designs. Section 4 reports on the experimental results and their 
analysis. Section 5 concludes the work.  

 

2. Deep Convolutional Neural Networks 
 

Neural networks are neurobiologically inspired computational models of learning and 
memory. A single neuron j processes information in two stages: It first computes the 
net input net j  from the incoming activations xi  of presynaptic neurons i Pre 

 net j  wjixi
iPre

I

    
and then transfers the net input through a nonlinear activation function  () , such as 
a sigmoid function 

  (net) 
1

1 exp(net)
. 

The neurons are organized typically in a layered structure where a layer of neurons 
are connected from a previous layer of neurons and there are no connections between 
the neurons in the same layer. One of popular neural architectures is the multilayer 
perceptron consisting of two fully-connected feedforward layers of neurons. If I and 
H denote the numbers of input neurons and hidden neurons, respectively, the k-th 
output of the multilayer perceptron is expressed as 
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where x  is the input training pattern and w  (w(1),w(2) )  is the weight vector that 
determines the neural network function. One of the most interesting features of neural 
networks is its learning capability: without programming a neural network can auto-
matically learn to solve problems from training examples, such as 

 DN  {(xn ,yn ) | n 1,2,..., N}  
where xn is the n-th input pattern and yn the associated target output pattern. The 

well-known error back-propagation algorithm adapts the weight vectors iteratively, 
that is by i) presenting an input pattern xn  to the input layer of the neural network, ii) 

computing the neural network output vector f(x,w) , iii) computing the error En (w) 

between the actual output f(xn ,w) and the target output yn  

 En(w) 
1

2
yn  f(xn ,w)

2   
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4. Experimental Results and Analysis 
 

The experiments have been performed by the Matlab code in [6]. We ran the four 
different kinds of experiments described in the previous section to analyze the effect 
of model complexity on the learning performance. The first is to analyze the training 
and test errors vs. the number of layers. The second is to see the training and test er-
rors vs. the number of training iterations. The third is the change of training and test 
errors vs. the total number of adjustable parameters, which represents the effective 
model complexity. The last is the change of training and test errors vs. the total num-
ber of parameters using neural networks. 

Fig. 4. shows the experimental results for the 4-layer and 6-layer CNNs. The train-
ing error is measured by the mean squared error (MSE). The test error is evaluated by 
the percentage of false answers i.e. the classification error rate. The training set con-
sisted of 6,000 examples and the test set of 1,000 examples. The number of units was 
fixed to 8 for each layer and the number of iterations was 1,000 epochs. For this set-
ting, we see that the deeper networks achieve better performance both in training and 
test errors.  

 

 
Fig. 4. The training and test errors vs. the number of layers in the convolutional neural 
networks.  
 

Fig. 5 shows the changes of performance for various numbers of training epochs. 
Since a large number of training iterations is equivalent to a more complex model 
than a small number of iteration, increasing the number of iterations has the same 
effect of using more complex models. In Fig. 5 we see the performance gets increased 
as more iterations are performed. We do not observe any overfitting behavior in this 
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setting of experiments. This shows an interesting property of the convolutional neural 
networks. We will come back to this issue in the discussion. 

 
Fig. 5. Performance comparison for the number of epochs in training. 
  

. 

 
Fig. 6. Effects of the number of parameters of the convolutional neural networks (by 
changing the number of units as well as layers) on the training error (the mean 
squared error) and the test error (the classification error rate).  

 
 
Fig. 6 compares the performance of the convolutional neural networks for a wide 

range of the number of parameters (360 to 3160). The range was generated by chang-
ing the number of units and the number of layers. The results shows that both the 
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testing and training errors decrease as the number of parameters increases, i.e. con-
sistent behavior of the training error (the mean squared error) and the test error (the 
classification error rate). That is, the generalization performance over a wide range of 
model complexity is good except for some specific parameter settings (e.g. around the 
number of parameters of 2860). This demonstrates the robustness of CNNs in general-
ization performance. However, this result should be interpreted more carefully. The 
minimum value of test error we achieved in these experiments is above 3% which is 
larger than reported optimal value such as 0.83% [4]. On the other hand, we observed 
the overfitting range experimented by neural networks(Fig. 7). In this experiment, we 
fixed the input nodes(784), output nodes(10) and varied hidden nodes(from 100 to 
280). The results shows that the training errors continuously decrease as the number 
of parameters increases, but the testing errors increases around the number of parame-
ters of 119100. This means that NNs is much weaker at overfitting problem than 
CNNs. 

 

 Fig. 7. Effects of the number of parameters of the neural networks (by changing the 
number of units as well as layers) on the training error (the mean squared error) and 
the test error (the classification error rate).  

 

5. Conclusion 
 

We studied the generalization behavior of convolutional neural networks for various 
combinations of model complexities. The model complexities were varied by the 
number of layers, the number of units, the number of epochs, and the number of ef-
fective parameters. On the MNIST digit data set of 6,000 images we found that the 
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CNNs show robust generalization performances over a wide range of model complex-
ities. The results are very interesting since the machine learning theory of model 
complexity says that the model should overfit if the model complexity increases. Per-
haps one reason for not overfitting is that our experimental settings were, despite the 
various settings, not wide enough to detect the overfitting ranges. And it is hard to 
find overfitting ranges because of sub-sampling layers. However, considering the 
nature of the digit recognition problem and the relatively big data set size (6,000 im-
ages for training and 1,000 images for test), the convolutional networks seem to be 
able to find invariance in the images. In addition, the capability of subsampling also 
seems to contribute to generalization performance by building sparse models of the 
data. 
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