
Effects of Model Complexity on Generalization 
Performance of Convolutional Neural Net-
works  

 
Tae-Jun Kim1, Dongsu Zhang2, and Joon Shik Kim3 

 
1Seoul National University, Seoul 151-742, Korea, E-mail: tjkim@bi.snu.ac.kr 
2Yangjae High School, Seoul, Korea, E-mail: 96lives@gmail.com 
3University of Seoul, Seoul 130-743, Korea, E-mail: jskim.ozmagi@gmail.com 
 
Abstract. Convolutional neural networks are known to be effective in learning 

complex image classification tasks. However, how to design the architecture or com-
plexity of the network structure requires a more quantitative analysis of the architec-
ture design. In this paper, we study the effect of model complexity on generalization 
capability of the convolutional neural networks on large-scale, real-life digit recogni-
tion data. We used the digit images of the MNIST dataset to train the neural networks 
and evaluated their performance on a test set of unobserved images. Using the LeNet 
software tool we varied the number of hidden layers and the number of units in the 
layers to evaluate the effect of model complexity on the generalization capability of 
the convolutional neural networks. In our experimental settings, we observe robust 
generalization performances of the convolutional neural networks on a wide range of 
model complexities. We analyze and discuss how the convolution layer and the sub-
sampling layer may contribute to the generalization performance. 

 
Keywords: Convolutional neural networks, MNIST, LeNet, image classification, 

model complexity, Occam’s razor, generalization performance 
 
 

1. Introduction 
 

Computers solve many problems well if programmed appropriately by human pro-
grammers. However, some artificial intelligence problems, such as image and speech 
analysis, are hard to program the computers to solve. In this case, machine learning 
offers new possibilities since it allows to automatically build a program from data, i.e. 
by repeatedly observing humans solving the problem. An important issue in machine 
learning is how to control the complexity of the model: if the model is too simple, it 
cannot learn the data, whereas too complex models may overfit the data.  

Convolutional neural networks are especially interesting as a machine learning 
model since they can learn complex patterns in real-life data sets, such as images. 
However, the design of the network structure, i.e. the number of layers and the num-
ber of units in the layers, remain an art. In this paper we aim to understand the rela-
tionship between the complexity of the network model and its generalization perfor-
mance by exploring the architecture space experimentally. Our vision is to build a 



deep neural network that can learn to recognize human faces as more human faces are 
observed. In this first stage of our research, in this paper we experiment with the 
MNIST benchmark data sets.  

The paper is organized as follows. In Section 2 we describe architecture and learn-
ing method of the convolutional neural network. In Section 3 we describe the data set 
and our experimental designs. Section 4 reports on the experimental results and their 
analysis. Section 5 concludes the work.  

 

2. Deep Convolutional Neural Networks 
 

Neural networks are neurobiologically inspired computational models of learning and 
memory. A single neuron j processes information in two stages: It first computes the 
net input net j  from the incoming activations xi  of presynaptic neurons i Pre 

 net j  wjixi
iPre

I

    
and then transfers the net input through a nonlinear activation function  () , such as 
a sigmoid function 

  (net) 
1

1 exp(net)
. 

The neurons are organized typically in a layered structure where a layer of neurons 
are connected from a previous layer of neurons and there are no connections between 
the neurons in the same layer. One of popular neural architectures is the multilayer 
perceptron consisting of two fully-connected feedforward layers of neurons. If I and 
H denote the numbers of input neurons and hidden neurons, respectively, the k-th 
output of the multilayer perceptron is expressed as 

 fk (x,w)   k wkh
(2) h whi

(1)xi
i1

I



h1

H








  

where x  is the input training pattern and w  (w(1),w(2) )  is the weight vector that 
determines the neural network function. One of the most interesting features of neural 
networks is its learning capability: without programming a neural network can auto-
matically learn to solve problems from training examples, such as 

 DN  {(xn ,yn ) | n 1,2,..., N}  
where xn is the n-th input pattern and yn the associated target output pattern. The 

well-known error back-propagation algorithm adapts the weight vectors iteratively, 
that is by i) presenting an input pattern xn  to the input layer of the neural network, ii) 

computing the neural network output vector f(x,w) , iii) computing the error En (w) 

between the actual output f(xn ,w) and the target output yn  

 En(w) 
1

2
yn  f(xn ,w)

2   



iv) chang

ing the er

 
and v) by
put layer
works ha
including
botics. N
science re

Traditi
tions. Ho
sisting of
interestin
be proven
functions
such as im
is the dee

mann ma

fully conn
tive diver

Anoth
contrast t
ers. That 
layer (Fig
unit has a
local patc
layer. Th
local ave
Each unit
and one t
volutiona

Fig.1. 

ging the weigh

rrors,  En
wji

, w

y propagating 
s to the direc

ave been succ
g pattern recog
Neural networ
esearch to inv
ionally, two-l

owever, recent
f many layers 
ng since theore
n to be a univ
s. Deep netwo
mage and spee
ep belief netw

achines (RBM

nected in a fee
rgence which 
er class of de
to a deep belie
is, a CNN con

g. 1). The con
a partial recep
ches of the in
e sub-samplin

erages of the 
t in the sub-sa
trainable bias.
al neural netw

A six-layer co

ht values wji

with respect to

wj

the errors com
tion of input 
cessfully used
gnition, comp
ks have also 

vestigate how h
layer multilay
t research sho
of processing

etically a mult
versal approxi
orks have pro
ech data. Ther

works (DBNs)

Ms) [1–4]. An 

edforward fas
is based on G

eep networks 
ef network, a 
nsists of many
nvolution laye
ptive field of 
nputs, not all 
ng layer consi

respective fe
ampling layer 
. The error ba
orks [5–9].  

onvolutional n

by a small am

o the weights

ji  wji 
E

w

mputed seque
layers. Due t

d for many a
puter vision, n

been used a
humans repre

yer perceptron
ows that deep 
g units, can o
tilayer percep
imator and, th
oven especially
re are two dif
) consisting o

RBM consist

shion. A DBM
Gibbs sampling

is the convol
CNN consists

y stacks of a c
er contains a n
the input ima
of them, are 

ists of a numb
eature maps i
has one train

ack-propagatio

neural network

mount ( ) in

En

wji

  
entially and ba
to its learning
applications in
natural langua
as computatio
sent, process, 

ns have been 
networks, i.e

outperform sha
tron having a 

hus, can learn 
y useful if th

fferent classes
f multiple lay

s of two layer

M is traditional
g [2].  
lutional neura
s of partially 
convolution la
number of fea
age. That is, i
connected to

ber of feature 
in the previou

nable coefficie
on algorithm i

k 

the direction

ackwards from
g capability, n
n artificial int
age processing
nal tools for 
and learn info
used for mos
. a learning m
allow network
single hidden
any complex 

he datasets are
of deep netw

yers of restrict

rs of neurons 

lly trained wit

al networks (C
connected net

ayer and a sub
ature maps, w
in a CNN, on
the next sub

maps, which 
us convolutio

ent for the loca
is used to train

n of reduc-

m the out-
neural net-
telligence, 
g, and ro-
cognitive 

formation.  
st applica-

model con-
ks. This is 
n layer can 
 nonlinear 
e complex 

works. One 
ted Boltz-

which are 

th contras-

CNNs). In 
twork lay-

b-sampling 
where each 
nly partial, 
b-sampling 
are scaled 

onal layer. 
al average 
n the con-

 



 
 

3. M
 

MNIST d
uted by t

are cente

ments, w
categorie
Fig.2. 
 

Fig. 2. Ex

 

To stu
designed 
the perfor
6 layers (
6-layer C
(which de
 

Fig 3. Ar
 

 

MNIST Di

data sets cons
the National I

red and norm

we used trainin
s (from “0” t

xample of han

udy the effec
the experime

rmances (the t
(Fig. 1). We a

CNNs. We also
epends on the 

chitecture of 4

igit Data S

ist of handwr
Institute of St

malized in an i

ng set and a 
to “9”). Som

ndwritten digit

t of model co
ents by varyin
training and te

also varied the
o plot the resu
number of lay

4-layer CNN u

Sets and E

ritten digit ima
tandards and 

image of fixed

test set of im
me example im

 

t images from

omplexity on 
ng the numbe
est errors) of C
e number of u
ults in terms o
ayers and units

used in the ex

Experimen

ages [10]. Thi
Technology (

d size (28×28

mages of singl
mages in the 

m MNIST datab

the generaliz
er of layers an
CNN models 

units in each la
of the effective
s) on the gener

xperiments for

nt Design 

is database w
(NIST) [11]. T

8 pixel). For th

le-digit numb
database are 

base. 

zation perform
nd units. We 
of 4 layers (Fi
ayer for the 4-
e number of p
ralization perf

r comparison. 

was distrib-
The digits 

he experi-

bers in ten 
shown in 

 

mance, we 
compared 
ig. 3.) and 
-layer and 

parameters 
formance. 

 



 

4. Experimental Results and Analysis 
 

The experiments have been performed by the Matlab code in [6]. We ran the four 
different kinds of experiments described in the previous section to analyze the effect 
of model complexity on the learning performance. The first is to analyze the training 
and test errors vs. the number of layers. The second is to see the training and test er-
rors vs. the number of training iterations. The third is the change of training and test 
errors vs. the total number of adjustable parameters, which represents the effective 
model complexity. The last is the change of training and test errors vs. the total num-
ber of parameters using neural networks. 

Fig. 4. shows the experimental results for the 4-layer and 6-layer CNNs. The train-
ing error is measured by the mean squared error (MSE). The test error is evaluated by 
the percentage of false answers i.e. the classification error rate. The training set con-
sisted of 6,000 examples and the test set of 1,000 examples. The number of units was 
fixed to 8 for each layer and the number of iterations was 1,000 epochs. For this set-
ting, we see that the deeper networks achieve better performance both in training and 
test errors.  

 

 
Fig. 4. The training and test errors vs. the number of layers in the convolutional neural 
networks.  
 

Fig. 5 shows the changes of performance for various numbers of training epochs. 
Since a large number of training iterations is equivalent to a more complex model 
than a small number of iteration, increasing the number of iterations has the same 
effect of using more complex models. In Fig. 5 we see the performance gets increased 
as more iterations are performed. We do not observe any overfitting behavior in this 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

Training error Test error

4‐layer

6‐layer



setting of experiments. This shows an interesting property of the convolutional neural 
networks. We will come back to this issue in the discussion. 

 
Fig. 5. Performance comparison for the number of epochs in training. 
  

. 

 
Fig. 6. Effects of the number of parameters of the convolutional neural networks (by 
changing the number of units as well as layers) on the training error (the mean 
squared error) and the test error (the classification error rate).  

 
 
Fig. 6 compares the performance of the convolutional neural networks for a wide 

range of the number of parameters (360 to 3160). The range was generated by chang-
ing the number of units and the number of layers. The results shows that both the 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

10 50 300 1000

4‐layer Training error

4‐layer Test error

6‐layer Training error

6‐layer Test error

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

E

r

r

o

r

Number fo Parameters

Train error

Test error



testing and training errors decrease as the number of parameters increases, i.e. con-
sistent behavior of the training error (the mean squared error) and the test error (the 
classification error rate). That is, the generalization performance over a wide range of 
model complexity is good except for some specific parameter settings (e.g. around the 
number of parameters of 2860). This demonstrates the robustness of CNNs in general-
ization performance. However, this result should be interpreted more carefully. The 
minimum value of test error we achieved in these experiments is above 3% which is 
larger than reported optimal value such as 0.83% [4]. On the other hand, we observed 
the overfitting range experimented by neural networks(Fig. 7). In this experiment, we 
fixed the input nodes(784), output nodes(10) and varied hidden nodes(from 100 to 
280). The results shows that the training errors continuously decrease as the number 
of parameters increases, but the testing errors increases around the number of parame-
ters of 119100. This means that NNs is much weaker at overfitting problem than 
CNNs. 

 

 Fig. 7. Effects of the number of parameters of the neural networks (by changing the 
number of units as well as layers) on the training error (the mean squared error) and 
the test error (the classification error rate).  

 

5. Conclusion 
 

We studied the generalization behavior of convolutional neural networks for various 
combinations of model complexities. The model complexities were varied by the 
number of layers, the number of units, the number of epochs, and the number of ef-
fective parameters. On the MNIST digit data set of 6,000 images we found that the 

8.00%

8.50%

9.00%

9.50%

10.00%

10.50%

11.00%

11.50%

79400 119100 158800 198500 222320

E

r

r

o

r

Number of Parameters

Train error

Test error



CNNs show robust generalization performances over a wide range of model complex-
ities. The results are very interesting since the machine learning theory of model 
complexity says that the model should overfit if the model complexity increases. Per-
haps one reason for not overfitting is that our experimental settings were, despite the 
various settings, not wide enough to detect the overfitting ranges. And it is hard to 
find overfitting ranges because of sub-sampling layers. However, considering the 
nature of the digit recognition problem and the relatively big data set size (6,000 im-
ages for training and 1,000 images for test), the convolutional networks seem to be 
able to find invariance in the images. In addition, the capability of subsampling also 
seems to contribute to generalization performance by building sparse models of the 
data. 
 
Acknowledgement 

This work was supported by the National Research Foundation of Korea (NRF) 
grant funded by the Korea government (MSIP) (NRF-2010-0017734-Videome), sup-
ported in part by KEIT grant funded by the Korea government (MKE) (KEIT-
10035348-mLife, KEIT-10044009).  
 
References 

1. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with 

neural networks. Science, 313, 504–507 (2006) 

2. Bengio, Y.: Learning deep architectures for AI. Foundations and Trends in 
Machine Learning, 2, 1–127 (2009) 

3. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep be-
lief nets. Neural Computation, 18, 1527–1554 (2006) 

4. Deng, L., Yu, D., Platt, J.: Scalable stacking and learning for building deep ar-
chitectures. In: 2012 IEEE International Conference on Acoustics, Speech and 

Signal Processing (ICASSP), pp. 2133–2136. IEEE Press, New York (2012). 

5.  LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, 
W., Jackel, L.D.:  Backpropagation applied to handwritten Zip code recogni-
tion. Neural Computation, 1, 541–551 (1989) 

6. Palm, R.B.: Prediction as a candidate for learning deep hierarchical models of 
data. Technical Report, Technical University of Denmark (2012) 

7. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep big mul-
tilayer perceptron for digit recognition. In: Montavon, G. et al. (eds.) Neural 
Networks: Tricks of the Trade, 2nd edn., LNCS 7700, pp. 581–598. Springer, 
Heidelberg (2012) 

8. Raiko, T., Valpola, H., LeCun, Y.: Deep learning made easier by linear trans-
formations in perceptrons. In: 15th International Conference on Artificial Intel-
ligence and Statistics (AISTATS), pp. 924 –932. (2012) 

9. Bouchain, D.: Character recognition using convolutional neural networks. 
Technical report, Institute for Neural Information Processing (2006) 



10. LeÓn, G.M., Moreno-Báez, A., Magallanes-Quintanar R., Valdez-Cepeda, 

R.D.: Assessment in subsets of MNIST handwritten digits and their effect in 
the recognition rate. Journal of Pattern Recognition Research, 2. 244–252 
(2011) 

11. LeCun, Y.: The MNIST database of handwritten digits, Available: 
http://yann.lecun.com/exdb/mnist/index.html 

12. Wilson, K.G.: The renormalization group and critical phenomena. Review of 
Modern Physics, 55, 583–600 (1983) 


