Effects of Model Complexity on Generalization
Performance of Convolutional Neural Net-
works

Tae-Jun Kim', Dongsu Zhang?, and Joon Shik Kim?®

!Seoul National University, Seoul 151-742, Korea, E-mail: tjkim@Dbi.snu.ac.kr
2Yangjae High School, Seoul, Korea, E-mail: 96lives@gmail.com
University of Seoul, Seoul 130-743, Korea, E-mail: jskim.ozmagi@gmail.com

Abstract. Convolutional neural networks are known to be effective in learning
complex image classification tasks. However, how to design the architecture or com-
plexity of the network structure requires a more quantitative analysis of the architec-
ture design. In this paper, we study the effect of model complexity on generalization
capability of the convolutional neural networks on large-scale, real-life digit recogni-
tion data. We used the digit images of the MNIST dataset to train the neural networks
and evaluated their performance on a test set of unobserved images. Using the LeNet
software tool we varied the number of hidden layers and the number of units in the
layers to evaluate the effect of model complexity on the generalization capability of
the convolutional neural networks. In our experimental settings, we observe robust
generalization performances of the convolutional neural networks on a wide range of
model complexities. We analyze and discuss how the convolution layer and the sub-
sampling layer may contribute to the generalization performance.

Keywords: Convolutional neural networks, MNIST, LeNet, image classification,
model complexity, Occam’s razor, generalization performance

1. Introduction

Computers solve many problems well if programmed appropriately by human pro-
grammers. However, some artificial intelligence problems, such as image and speech
analysis, are hard to program the computers to solve. In this case, machine learning
offers new possibilities since it allows to automatically build a program from data, i.e.
by repeatedly observing humans solving the problem. An important issue in machine
learning is how to control the complexity of the model: if the model is too simple, it
cannot learn the data, whereas too complex models may overfit the data.
Convolutional neural networks are especially interesting as a machine learning
model since they can learn complex patterns in real-life data sets, such as images.
However, the design of the network structure, i.e. the number of layers and the num-
ber of units in the layers, remain an art. In this paper we aim to understand the rela-
tionship between the complexity of the network model and its generalization perfor-
mance by exploring the architecture space experimentally. Our vision is to build a



deep neural network that can learn to recognize human faces as more human faces are
observed. In this first stage of our research, in this paper we experiment with the
MNIST benchmark data sets.

The paper is organized as follows. In Section 2 we describe architecture and learn-
ing method of the convolutional neural network. In Section 3 we describe the data set
and our experimental designs. Section 4 reports on the experimental results and their
analysis. Section 5 concludes the work.

2. Deep Convolutional Neural Networks

Neural networks are neurobiologically inspired computational models of learning and
memory. A single neuron j processes information in two stages: It first computes the
net input net; from the incoming activations X; of presynaptic neurons i ePre

|
net; = > w;Xx
iePre

and then transfers the net input through a nonlinear activation function o(:) , such as

a sigmoid function
1

o(net)= ——.
1+ exp(—net)
The neurons are organized typically in a layered structure where a layer of neurons
are connected from a previous layer of neurons and there are no connections between
the neurons in the same layer. One of popular neural architectures is the multilayer
perceptron consisting of two fully-connected feedforward layers of neurons. If | and
H denote the numbers of input neurons and hidden neurons, respectively, the k-th
output of the multilayer perceptron is expressed as

(A ' )
fk(X:W)zo'kLZWﬁrzm)o'h Zwt(ﬁ)xi J
h=1 i=1
where X is the input training pattern and w= (W™ w®) is the weight vector that

determines the neural network function. One of the most interesting features of neural
networks is its learning capability: without programming a neural network can auto-
matically learn to solve problems from training examples, such as

Dy ={(x,.y,)In=12,..,N}
where X, is the n-th input pattern and Y, the associated target output pattern. The

well-known error back-propagation algorithm adapts the weight vectors iteratively,
that is by i) presenting an input pattern X, to the input layer of the neural network, ii)

computing the neural network output vector f(x,w), iii) computing the error E (W)
between the actual output f(x,,w) and the target output Y,

1
Eq(w) =21y, = fx,, wf



iv) changing the weight values w;; by a small amount (77) in the direction of reduc-

ing the errors, — fva, , with respect to the weights
oE,
Wi < W — UW

n
and v) by propagating the errors computed sequentially and backwards from the out-
put layers to the direction of input layers. Due to its learning capability, neural net-
works have been successfully used for many applications in artificial intelligence,
including pattern recognition, computer vision, natural language processing, and ro-
botics. Neural networks have also been used as computational tools for cognitive
science research to investigate how humans represent, process, and learn information.
Traditionally, two-layer multilayer perceptrons have been used for most applica-
tions. However, recent research shows that deep networks, i.e. a learning model con-
sisting of many layers of processing units, can outperform shallow networks. This is
interesting since theoretically a multilayer perceptron having a single hidden layer can
be proven to be a universal approximator and, thus, can learn any complex nonlinear
functions. Deep networks have proven especially useful if the datasets are complex
such as image and speech data. There are two different classes of deep networks. One
is the deep belief networks (DBNSs) consisting of multiple layers of restricted Boltz-

mann machines (RBMs) [1-4]. An RBM consists of two layers of neurons which are

fully connected in a feedforward fashion. A DBM is traditionally trained with contras-
tive divergence which is based on Gibbs sampling [2].

Another class of deep networks is the convolutional neural networks (CNNSs). In
contrast to a deep belief network, a CNN consists of partially connected network lay-
ers. That is, a CNN consists of many stacks of a convolution layer and a sub-sampling
layer (Fig. 1). The convolution layer contains a number of feature maps, where each
unit has a partial receptive field of the input image. That is, in a CNN, only partial,
local patches of the inputs, not all of them, are connected to the next sub-sampling
layer. The sub-sampling layer consists of a number of feature maps, which are scaled
local averages of the respective feature maps in the previous convolutional layer.
Each unit in the sub-sampling layer has one trainable coefficient for the local average
and one trainable bias. The error back-propagation algorithm is used to train the con-
volutional neural networks [5-9].

Input Layer Convolutional Layer ~ Sub-sampling Layer Convolutional Layer Sub-sampling Layer ~Output Layer

Fig.1. A six-layer convolutional neural network



3. MNIST Digit Data Sets and Experiment Design

MNIST data sets consist of handwritten digit images [10]. This database was distrib-
uted by the National Institute of Standards and Technology (NIST) [11]. The digits
are centered and normalized in an image of fixed size (28x28 pixel). For the experi-

ments, we used training set and a test set of images of single-digit numbers in ten
categories (from “0” to “9”). Some example images in the database are shown in

[ 1l 1 E1 E3

Fig. 2. Example of handwritten digit images from MNIST database.

To study the effect of model complexity on the generalization performance, we
designed the experiments by varying the number of layers and units. We compared
the performances (the training and test errors) of CNN models of 4 layers (Fig. 3.) and
6 layers (Fig. 1). We also varied the number of units in each layer for the 4-layer and
6-layer CNNs. We also plot the results in terms of the effective number of parameters
(which depends on the number of layers and units) on the generalization performance.

5]
ST

Input Layer Convolutional Layer = Sub-sampling Layer Output Layer

Fig 3. Architecture of 4-layer CNN used in the experiments for comparison.



4. Experimental Results and Analysis

The experiments have been performed by the Matlab code in [6]. We ran the four
different kinds of experiments described in the previous section to analyze the effect
of model complexity on the learning performance. The first is to analyze the training
and test errors vs. the number of layers. The second is to see the training and test er-
rors vs. the number of training iterations. The third is the change of training and test
errors vs. the total number of adjustable parameters, which represents the effective
model complexity. The last is the change of training and test errors vs. the total num-
ber of parameters using neural networks.

Fig. 4. shows the experimental results for the 4-layer and 6-layer CNNSs. The train-
ing error is measured by the mean squared error (MSE). The test error is evaluated by
the percentage of false answers i.e. the classification error rate. The training set con-
sisted of 6,000 examples and the test set of 1,000 examples. The number of units was
fixed to 8 for each layer and the number of iterations was 1,000 epochs. For this set-
ting, we see that the deeper networks achieve better performance both in training and
test errors.

35.00%

30.00%

25.00%

20.00%
M 4-layer

15.00% - M 6-layer

10.00% -

5.00% -

0.00% -
Training error Test error

Fig. 4. The training and test errors vs. the number of layers in the convolutional neural
networks.

Fig. 5 shows the changes of performance for various numbers of training epochs.
Since a large number of training iterations is equivalent to a more complex model
than a small number of iteration, increasing the number of iterations has the same
effect of using more complex models. In Fig. 5 we see the performance gets increased
as more iterations are performed. We do not observe any overfitting behavior in this



setting of experiments. This shows an interesting property of the convolutional neural
networks. We will come back to this issue in the discussion.

90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

—<
~

=9—4-layer Training error

== 4-layer Test error

‘\\ \
\\ 6-layer Training error
\ == 6-layer Test error
"I

10

T T T

50 300 1000

Fig. 5. Performance comparison for the number of epochs in training.

7.00%

6.00% - \
5.00%

4.00%
3.00%

2.00%

=fl=Train error

Test error

1.00%
0.00%

Q O O O O O O O O O
©° (O AO° ©° \©O° ,0° 7 L,0° 0 O
B AT PP

Number fo Parameters

Fig. 6. Effects of the number of parameters of the convolutional neural networks (by
changing the number of units as well as layers) on the training error (the mean
squared error) and the test error (the classification error rate).

Fig. 6 compares the performance of the convolutional neural networks for a wide
range of the number of parameters (360 to 3160). The range was generated by chang-
ing the number of units and the number of layers. The results shows that both the




testing and training errors decrease as the number of parameters increases, i.e. con-
sistent behavior of the training error (the mean squared error) and the test error (the
classification error rate). That is, the generalization performance over a wide range of
model complexity is good except for some specific parameter settings (e.g. around the
number of parameters of 2860). This demonstrates the robustness of CNNs in general-
ization performance. However, this result should be interpreted more carefully. The
minimum value of test error we achieved in these experiments is above 3% which is
larger than reported optimal value such as 0.83% [4]. On the other hand, we observed
the overfitting range experimented by neural networks(Fig. 7). In this experiment, we
fixed the input nodes(784), output nodes(10) and varied hidden nodes(from 100 to
280). The results shows that the training errors continuously decrease as the number
of parameters increases, but the testing errors increases around the number of parame-
ters of 119100. This means that NNs is much weaker at overfitting problem than
CNNs.

11.50%

11.00%

10.50%

r 10.00% -

9.50% } =fl=Train error

Test error
9.00%

8.50%

8-00% T T T T 1
79400 119100 158800 198500 222320

Number of Parameters

Fig. 7. Effects of the number of parameters of the neural networks (by changing the
number of units as well as layers) on the training error (the mean squared error) and
the test error (the classification error rate).

5. Conclusion

We studied the generalization behavior of convolutional neural networks for various
combinations of model complexities. The model complexities were varied by the
number of layers, the number of units, the number of epochs, and the number of ef-
fective parameters. On the MNIST digit data set of 6,000 images we found that the



CNNs show robust generalization performances over a wide range of model complex-
ities. The results are very interesting since the machine learning theory of model
complexity says that the model should overfit if the model complexity increases. Per-
haps one reason for not overfitting is that our experimental settings were, despite the
various settings, not wide enough to detect the overfitting ranges. And it is hard to
find overfitting ranges because of sub-sampling layers. However, considering the
nature of the digit recognition problem and the relatively big data set size (6,000 im-
ages for training and 1,000 images for test), the convolutional networks seem to be
able to find invariance in the images. In addition, the capability of subsampling also
seems to contribute to generalization performance by building sparse models of the
data.

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIP) (NRF-2010-0017734-Videome), sup-
ported in part by KEIT grant funded by the Korea government (MKE) (KEIT-
10035348-mL.ife, KEIT-10044009).

References
1. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with

neural networks. Science, 313, 504-507 (2006)

2. Bengio, Y.: Learning deep architectures for Al. Foundations and Trends in
Machine Learning, 2, 1-127 (2009)

3. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep be-
lief nets. Neural Computation, 18, 1527-1554 (2006)

4. Deng, L., Yu, D., Platt, J.: Scalable stacking and learning for building deep ar-
chitectures. In: 2012 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 2133-2136. IEEE Press, New York (2012).

5. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard,
W., Jackel, L.D.: Backpropagation applied to handwritten Zip code recogni-
tion. Neural Computation, 1, 541-551 (1989)

6. Palm, R.B.: Prediction as a candidate for learning deep hierarchical models of
data. Technical Report, Technical University of Denmark (2012)

7. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep big mul-
tilayer perceptron for digit recognition. In: Montavon, G. et al. (eds.) Neural
Networks: Tricks of the Trade, 2" edn., LNCS 7700, pp. 581-598. Springer,
Heidelberg (2012)

8. Raiko, T., Valpola, H., LeCun, Y.: Deep learning made easier by linear trans-
formations in perceptrons. In: 15™ International Conference on Avrtificial Intel-
ligence and Statistics (AISTATS), pp. 924 —932. (2012)

9. Bouchain, D.: Character recognition using convolutional neural networks.
Technical report, Institute for Neural Information Processing (2006)



10.

11.

12.

Leon, G.M., Moreno-Baez, A., Magallanes-Quintanar R., Valdez-Cepeda,

R.D.: Assessment in subsets of MNIST handwritten digits and their effect in
the recognition rate. Journal of Pattern Recognition Research, 2. 244-252
(2011)

LeCun, Y.. The MNIST database of handwritten digits, Available:
http://yann.lecun.com/exdb/mnist/index.html

Wilson, K.G.: The renormalization group and critical phenomena. Review of
Modern Physics, 55, 583-600 (1983)



