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Abstract

Finding common latent components from data is an important step in many data
mining applications. These latent variables are typically categorical and there
are many sources of categorical variables, including dichotomous, nominal,
ordinal, and cardinal values. Thus it is important to be able to represent the
discrete components (categories) in a flexible way. Here we propose a
nonparametric Bayesian approach to learning "plastic" discrete components by
considering the uncertainty of the number of components with the Indian buffet
processes (IBP). As observation models, we use the product of experts (PoE) to
utilize sharper representation power and sparse over-completeness. We apply the
proposed method to optical hand-written digit datasets and demonstrate its
capability of finding flexible global-to-local components that can be used to
describe and generate the observed digit images faithfully.

1 Introduction

Finding common latent components from data is an important step in many data mining
applications. These latent variables are typically categorical and there are many sources of
categorical variables, including dichotomous, nominal, ordinal, and cardinal values. So far,
for discrete variables, latent Dirichlet allocation (LDA) [2] and a relatively small number of
works (extensions [3], [4] from PCA, and NMF [1]) provide the methodologies for count
data on discrete features (e.g., term frequency of language data). To deal with arbitrary
categorical data, it is necessary to represent feature-value pairs on the components capable of
expressing rule-like common patterns of variable feature-value pairs.

In this paper, we propose a discrete-value component learning method via expressing explicit
feature membership on components from overall (global) patterns to local ones. For this,
Indian Buffet Process (IBP) [15] is applied to represent feature-to-component relationships
in a non-parametric Bayesian (NPB) way. This approach can automatically choose an
unbounded number of components and has already been applied to several tasks ([12]-[14]).

In this method, we assume that data are generated from a small number of components where
the components are linked with a probabilistic AND operation, which can connect them as a



construction process. Product of experts (PoE) [5] nicely demonstrates a probabilistic model
for this situation by formulating component (or expert) values as a weighted product of
themselves. PoE model is advantageous from several perspectives: 1) By multiplying
marginal distributions of individual experts over and over, POE model can make a sharp joint
distribution. 2) PoE can be used for sparse over-complete learning of representation where
the number of experts exceeds the number of features [6]. People extended conventional PoE
and built models of dictionary using population coding, where the extended PoE is widely
used in encoding-related research ([7]-[11]).

Additionally, from the point of view of constructive machine learning, the experts in PoE
with the above properties perhaps can be seen as basic elements for construction of original
data instances, and we can regenerate data via composition of them. In [11], data fragments
are used as basic components for procedural construction into generated data.

This paper is organized as follows. Section 2 introduces the proposed model and the
inference method. In section 3, the experimental results will be explained. Finally, section 4
concludes this paper.

2 The Proposed Method

2.1 Nonparametric Bayesian Model for Learning Discrete Components

In [14], a nonparametric Bayesian feature construction method for IRL was introduced. The
method was designed to learn reward functions in RL. We extend the model for PoE as
shown in Figure 1.

At first, we assume that X is a data matrix (composed of i.i.d N instances and F features)
generated from K components and their corresponding weights w. The prior distribution of
each w is univariate Gaussian. U is a K x N random matrix to indicate the participation of
components (component usage) to generate each instance. The prior for U is Bernoulli
distribution. Also, V is a Dirichlet-categorical (or beta-Bernoulli) Fx K random matrix to
indicate the value on each component from the set of possible values of x, val(x,). Z is a

FxK 0-1 binary random matrix to indicate that each feature is used for each component
generated from the IBP. Note that K can be increased to infinity regarding to the property of
dataset. R=V ® Z 1is a sparse matrix to represent rule-like component description through
Hadamard product (element-wise product) of value matrix V and selected feature matrix Z.
We can convert R, and X, (the f~th column in R and X) into R/ and X/ using 1-of-k
representation to express values explicitly.

The observation model of the proposed method is based on PoE. Observable variables in
Figure 1 are shaded nodes x. In general case, we can use softmax function to represent
categorical distribution for observed variables with the energy function [9], [10]:
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Figure 1. A graphical model for learning discrete components and weights.
Val(xy) represent the set of possible values of x;




F_ N KV
EXRW.U)==3 > ) ) Ry WU, X,
f=1 n=1 k=1 v=1
For simplicity, we use binary dataset where the values on V of features are -1 and 1. Then,
the conditional distribution for one observed variable x,,is as follows:
eXP(Y 7y Wy thy, X, )

k
Z CXP(Z P Wy Uy, X))
k

X, €val (x,)

P(x, |R,W,U)=

Also, the distribution can be simplified as follows:

1
Lexp(=2-) 7w, -1y,

k
2.2 MCMC Posterior Inference as a Learning Method

P(x,, =1|R,W,U)=

There is no general analytic posterior inference method for arbitrary probabilistic graphical
models (PGM). So, approximate methods such as variational methods and Markov chain
Monte Carlo (MCMC) approach are often used. As MCMC approaches, we use Gibbs
sampling with a few Metropolis-Hastings (MH) updates similar to the method in [14], [16].
The posterior distribution over components R, the weights I and the component usages U is
as

PR,W,U|X,a,8) x P(X|R,W,U)YPW)PU)P(R|,3)

where P(X|R,W,U) is the likelihood and P(W) is the prior on the weights and P(U) is
the prior on the usage. «,3 are hyperparameters to control the total number of components
on IBP and value selection each.

Following the ancestral order, we use MH update for V, Z, W and U consecutively to infer
the posterior. To do this, after random initialization we iteratively update values on each
variable by sampling from the probability distribution conditioned on all of the other random
variables. In the part of sampling Z using the IBP, we take 2-step procedure on each feature.
Firstly, Gibbs sampling for Z,. is performed for all components. After that, MH update for

new components is sampled with Hastings acceptance ratio of new components involved in
the model over the model without them. For W, we use Gaussian distribution for proposing
update weight and accept it with MH update.

To get the learned components and weights, we choose the sample with the maximum
posterior.

3 Experimental Results and Discussion

In this section, we show the qualitative results from the experiments and discuss their
meaning. For applications, each feature can be used to describe the special characteristics to
represent the linkable parts to others considering relational, spatial or temporal features.

To show the concept of construction with components, we use simple binary image dataset.
So, we binarize optical hand-written digit data [17] from UCI repository where the number of
training data instances is 3823 and the size of each instances is 8 x8 (Figure 2). The dataset
contains approximately equal number of each digit 0 ~ 9. They are then vectorized to form
instance rows in the data matrix X of which elements are 1 or -1.

Using the proposed model, we learn discrete components with the parameter a=6, 5=(1,1).

The components can have some selected features with 2 values {1, -1} and not-selected
features, which are regarded as don 't care condition getting from IBP naturally. Figure 2
shows one component example specifying the values and not-selected features with “x’.

The weights of local patterns have a tendency to increase very high. Rules in local patterns
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Figure 2. Optical hand-written digit dataset examples (left). 1 is assigned on the black, -1 is
assigned on the white. One component example (right). Component specifies some features

with values, but the other features are not specified (marked with ¢x’). One component has
the corresponding fixed weight.
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are so simple to be used averagely following the overall data statistics. On the other hand, the
global patterns mostly are used in the special pattern of digits as Figure 3. Note that positive
components specify instances and negative components filter them. Also, the size of
component is so various that global components cover overall shape and local patterns
described in small detail. The proposed model tries to build the balanced dictionary
automatically to explain the dataset. Giving more sparsity, composition of global and local
components can construct instances with arbitrary properties on each feature in a
probabilistic manner.

Note that this approach for image modeling looks for the unified set of components which
can have from 1 up to the number of all features for construction process, while mcRBM
does not utilize more than 2 pixel dependencies [18]. And, Adams ez al. studied NPB-based
graphical model structure learning using cascading IBP [19]. It is different from our work
that they do not consider the meaning of hidden variables and their interpretation as
components.

4 Conclusion

This paper suggests nonparametric Bayesian approaches to extract global-to-local discrete
components. While the assumption of exchangeability on features is relaxed, they provide
automatically balanced dictionary for construction using the observation models with
product of experts. This work is still ongoing to show the feasibility with experiments on
sequential many-valued dataset: e.g. 1) music and 2) mobile behavior lifelogs with
smartphone sensors. Also, based on [11], we will seek to utilize the idea of randomly
segmented data fragment as initial component candidates as future works to expect quicker
learning and apply incremental learning easily.
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Figure 3. All components as learning results (left). Global and local components are
extracted together. Each instance can be generated from the combination of these
components probabilistically. The set of frequently used components on each digit (right).
Some same components are used on similar digits: (0, 9), (2, 3) and more.
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