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Abstract 
Finding common latent components from data is an important step in many data 
mining applications. These latent variables are typically categorical and there 
are many sources of categorical variables, including dichotomous, nominal, 
ordinal, and cardinal values. Thus it is important to be able to represent the 
discrete components (categories) in a flexible way. Here we propose a 
nonparametric Bayesian approach to learning "plastic" discrete components by 
considering the uncertainty of the number of components with the Indian buffet 
processes (IBP). As observation models, we use the product of experts (PoE) to 
utilize sharper representation power and sparse over-completeness. We apply the 
proposed method to optical hand-written digit datasets and demonstrate its 
capability of finding flexible global-to-local components that can be used to 
describe and generate the observed digit images faithfully. 

 

1 Introduction 
Finding common latent components from data is an important step in many data mining 
applications. These latent variables are typically categorical and there are many sources of 
categorical variables, including dichotomous, nominal, ordinal, and cardinal values. So far, 
for discrete variables, latent Dirichlet allocation (LDA) [2] and a relatively small number of 
works (extensions [3], [4] from PCA, and NMF [1]) provide the methodologies for count 
data on discrete features (e.g., term frequency of language data). To deal with arbitrary 
categorical data, it is necessary to represent feature-value pairs on the components capable of 
expressing rule-like common patterns of variable feature-value pairs. 

In this paper, we propose a discrete-value component learning method via expressing explicit 
feature membership on components from overall (global) patterns to local ones. For this, 
Indian Buffet Process (IBP) [15] is applied to represent feature-to-component relationships 
in a non-parametric Bayesian (NPB) way. This approach can automatically choose an 
unbounded number of components and has already been applied to several tasks ([12]-[14]). 

In this method, we assume that data are generated from a small number of components where 
the components are linked with a probabilistic AND operation, which can connect them as a 
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For simplicity, we use binary dataset where the values on V of features are -1 and 1. Then, 
the conditional distribution for one observed variable xnf is as follows: 
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Also, the distribution can be simplified as follows:  
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2 .2  MCMC Pos ter ior  In ference  as  a  Learn ing  Method 

There is no general analytic posterior inference method for arbitrary probabilistic graphical 
models (PGM). So, approximate methods such as variational methods and Markov chain 
Monte Carlo (MCMC) approach are often used. As MCMC approaches, we use Gibbs 
sampling with a few Metropolis-Hastings (MH) updates similar to the method in [14], [16]. 
The posterior distribution over components R, the weights W and the component usages U is 
as  

( , , | , , ) ( | , , ) ( ) ( ) ( | , )P R W U X P X R W U P W P U P Rα β α β∝  

where ( | , , )P X R W U

 

is the likelihood and ( )P W  is the prior on the weights and ( )P U  is 
the prior on the usage. ,α β  are hyperparameters to control the total number of components 
on IBP and value selection each.  

Following the ancestral order, we use MH update for V, Z, W and U consecutively to infer 
the posterior. To do this, after random initialization we iteratively update values on each 
variable by sampling from the probability distribution conditioned on all of the other random 
variables. In the part of sampling Z using the IBP, we take 2-step procedure on each feature. 
Firstly, Gibbs sampling for ,:fZ

 

is performed for all components. After that, MH update for 
new components is sampled with Hastings acceptance ratio of new components involved in 
the model over the model without them. For W, we use Gaussian distribution for proposing 
update weight and accept it with MH update. 

To get the learned components and weights, we choose the sample with the maximum 
posterior. 

 
3 Experimental  Results  and Discussion 
In this section, we show the qualitative results from the experiments and discuss their 
meaning. For applications, each feature can be used to describe the special characteristics to 
represent the linkable parts to others considering relational, spatial or temporal features. 

To show the concept of construction with components, we use simple binary image dataset. 
So, we binarize optical hand-written digit data [17] from UCI repository where the number of 
training data instances is 3823 and the size of each instances is 8×8 (Figure 2). The dataset 
contains approximately equal number of each digit 0 ~ 9. They are then vectorized to form 
instance rows in the data matrix X of which elements are 1 or -1. 

Using the proposed model, we learn discrete components with the parameter α=6, β=(1,1). 
The components can have some selected features with 2 values {1, -1} and not-selected 
features, which are regarded as don’t care condition getting from IBP naturally. Figure 2 
shows one component example specifying the values and not-selected features with ‘×’. 

The weights of local patterns have a tendency to increase very high. Rules in local patterns 
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