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Abstract

A method for evolving behavior-based robot controllers
using genetic programming is presented. Due to their hi-
erarchical nature, genetic programs are useful representing
high-level knowledge for robot controllers. One drawback
is the difficulty of incorporating sensory inputs. To over-
come the gap between symbolic representation and direct
sensor values, the elements of the function set in genetic
programming is implemented as a single-layer perceptron.
Each perceptron is composed of senory input nodes and a
decision output node. The robot learns proper behavior
rules based on local, limited sensory information without
using an internal map. First, it learns how to discriminate
the target using single-layer perceptrons. Then, the learned
perceptrons are applied to the function nodes of the genetic
program tree which represents a robot controller. Experi-
ments have been performed using Khepera robots. The pre-
sented method successfully evolved high-level genetic pro-
grams that control the robot to find the light source from
sensory inputs.

1. Introduction

Robot control programs can be considered as hierarchi-
cal structures of basic behavior modules. When designing
this structure, it is impossible or very difficult to dertermine
the hierarchical structure of the control program and its size
in advance. Genetic programming (GP) provides a power-
ful tool to design robot controllers of varying complexity
and shape. Moreover, basic modules and hierarchical asso-
ciation between them can be easily represented by function
and terminal structure of genetic program.

Several attempts have been made to control robots us-
ing GP. Koza [1] used GP to evolve a control program for
artificial ants foraging food in grid environment. Zhang
and Cho [2] devised the fitness switching method to evolve

coordinated collective behaviors, such as herding and box-
pushing, among several agents in a simulated grid environ-
ment.

The genetic programs used in the above approaches are
composed of symbolic expressions to represent high-level
decision rules and plans. However, these approaches are not
appropriate to real world situations due to their ignorance of
detailed real-world sensor inputs and motor control outputs.

In this paper, we present a method for bridging the gap
between symbolic expressions and direct sensor values from
the hardware robots. Instead of hand-coded symbolic ex-
pressions, a single-layer perceptron is used as elements of
the function set in genetic programs. Each perceptron is
composed of senor information in its input layer and a de-
cision node in its output layer. This approach provides the
robot with a learning ability as well as a method for finding
proper sensor combinations and associated parameters to
determine particular real-world situation. Genetic proram-
ming is then applied to organize proper high-level strategies
for achieving a certain task.

The perceptrons are first trained and then the genetic pro-
grams are evolved using the learned perceptrons. Since evo-
lution takes a very long time and the initially created pro-
grams, which usually exhibit low fitness value, may cause
damage to robot hardware when directly controlled, we
used a Khepera simulator developed by Michel [3] which
well imitates the real world for evolving proper computer
programs. After evolving in simulation, we transferred the
evolved controller to the real Khepera robot and observed
the robot learning proper behavior rules.

The paper is organized as follows. Section 2 surveys the
related work. In Section 3 we present the genetic program
architecture used in evolving robot controllers. Section 4
describes experimental setup. Section 5 reports experimen-
tal results. Section 6 discuss our results and further work.
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2. Related Work

Mobile robot behavior can be considered as a result of
mapping a certain stimulus into an appropriate response. In
order to learn a certain behavior, the robot must perceive
some stimulus and find its proper interpretation. This in-
terpretation could be one of its past experiences, its pre-
defined situations, preconditions of if-then rules or just a
vector composed of some sensor values [5]. To endow
a mobile robot with an ability to adapt to a dynamic and
unpredictable environment, the domain specific knowledge
should be kept as small as possible since well-suited knowl-
edge or strategies in one domain may be useless in another
domain. It should also be tried to keep the basic mod-
ules as primitive as possible. All these processes should
be achieved within the limit of build-in equipment, of the
robot itself.

While keeping behaviors as simple as possible, coordina-
tion architectures of simple behaviors are needed. Whithin
the behavior-based paradigm, there are several coordination
architectures [5]. One of them is the subsumption archi-
tecture [7]. In this architecture, complex behavior modules
subsume simpler behavior modules, and coordination occur
via inhibition and suppression among modules while keep-
ing hierarchy and priority between behaviors. Lower behav-
ior modules do not care about higher modules nor do they
know about it. Though this architecture has been well coor-
dinated behavior to be successful in producing, it has some
drawbacks in learning and adaptation because of its hard-
wired hierarchical topology and difficulty of design and in-
corporation of new behavior module.

Another well-known architecture is the schema-based ar-
chitecture [5]. In the schema-based architecture, behavior
coordination is simply a vector summation. The output vec-
tor of all active behavior modules contributes to some de-
gree to the robot’s global motion. As a special form of a
schema-based coordination, an action selection mechanism
determines which behavior is performed by activation levels
of each behavior modules.

Though above coordination mechanisms show strengths
as a reactive system, there are much room for improvement.
Because they do not impose internal representations and a
sophisticated planning scheme with relatively simple com-
putation, a behavior-based system has strength in general
applicability to a dynamically changing environment and in
real time interaction. But their ability is relatively confined
to simple task such as obstacle avoiding, landmark finding,
and simple box-pushing in obstacle-free environments [9].
To achieve a more complex task, the robots needs such func-
tionalities as hierarchical association between behaviors, se-
quential ordering of several behavior modules, internal rep-
resentation of a given world or past experiences, and, as
the most essential feature, learning ability to adapt to a dy-

namic, unpredictable, and vast world. Of course, these ad-
ditional capabilities should not hurt inherent merits of the
behavior-based paradigm.

Genetic Programming paradigm [1] provides a powerful
tool for automatically learning behavior coordination mech-
anisms. Genetic programming is an automatic program-
ming method that finds the most fit computer programs by
means of natural selection and genetics [1]. Since the com-
puter programs in genetic programming are usually repre-
sented as trees or LISP S-expressions, symbolic knowledge
can be easily represented. Since the genetic program con-
sists of arbitrary function nodes and terminal nodes, genetic
programming is generally applicable. Besides being differ-
ent from simple genetic algorithms(GAs) which are usually
encoded as a fixed bit string, genetic programming can rep-
resent hierarchical relationships between modules. Sequen-
tial action ordering can also be represented in genetic pro-
grams by defining proper functions. This feature is very
useful in some situation, since it is somtimes necessay to
produce well-ordered sequential actions.

Several attempts to control robots using GP have been
made. Koza [1] used GP to evolve a control program for
artificial ants foraging food in grid environment. In this ap-
proach, the criteria for judging the environment and a set
of actions that a robot can take are predefined in a sym-
bolic manner. Though interesting in the high level planning
of robot behaviors, this approach is not appropriate to real
world situations due to its ignorance of detailed sensing and
action module implementation. Greg [8] has used GP to
co-evolve robot controllers. In this approach, a robot reacts
directly to the signals of sensors without judging its current
state. This has the advantage that the robots can take actions
very fast, but the long-term behavior may be poor due to its
lack of action planning. Zhang and Cho [2] devised a fitness
switching algorithm to evolve collective behavior, such as
herding and box-pushing, among several agents in a simu-
lated grid environment. Although this approach has demon-
strated successful evolution of emergent collective behav-
ior performing relatively complex tasks – avoiding obsta-
cles and box-pushing in coordinatd group motion – from
primitive behaviors, it has a pending question of transfer-
ring the simulation result to a real robot hardware [2]. Lee,
Hallam, and Lund [9] have proposed a developing method
for behavior-based controller using genetic programming.
They deploy GP to evolve behavior primitives and apply
evolved behavior primitives to a predesigned control struc-
ture resembling of the subsumption architecture of Brook’s.
Though they evolve primitive behavior modules and take
an arbitrator module to control two primitive behaviors to
overcome the lack of action planning, the prespecified over-
all control structure may impose constraints on the flexibil-
ity of stratesgies evolved.
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Table 1: Function and terminal symbols used in GP
trees.

SYMBOL MEANING
IOL, IOR, If Obstacle is located
IOF, IOB Left/Right/Front/Back

Function set ITL, ITR, If Target is located
ITF, ITB Left/Right/Front/Back
PROG2 Execute the left subtree

and then the right subtree
TL, TR Turn Left/Right

Terminal set MF Move Forward
RM Random Move
ST STop

3. Neurogenetic Programs

Genetic programming(GP) is an automatic program-
ming method that finds the most fit computer programs by
means of natural selection and genetics. It starts with initial
population of randomly generated computer programs, and
these computer programs undergo adaptation by applying
genetic operators to approach the most fit solution for given
problem space [1]. Each individual program in the popula-
tion is usually represented as trees or LISP S-expressions.
The tree consists of elements from the function set and the
terminal set appropriate to the problem domain. Typically,
terminal symbols provide values to the GP program while
function symbols perform operation on their input, which
are either terminals or output from other functions. For our
work, functions denote sensing of environments and are im-
plemented by perceptrons. Terminals denote actions to be
taken. Table 1 shows the function and terminal symbols
used in our genetic programs. An illustrative example of
the genetic program for mobile robot control is shown in
Figure 1.

When the computer programs are created, each individ-
ual in the population is run so that its fitness is measured. In
our work, each computer program is evaluated in terms of
how well it performs the given task in the particular environ-
ment. Then computer programs are selected in proportional
to their fitness. Offspring programs are produced from the
selected programs by applying genetic operators such as re-
production, crossover, and mutation. The offspring popula-
tion replaces the old population.

The adaptation mechanism of GP is similar to that of
genetic algorithms, except their representations. Individ-
uals of GP are usually represented as trees or LISP S-
expressions. But GA chromosomes are usually represented
as fixed-length bit strings. For many problems, the most
natural representation for a solution is a hierarchical com-
puter program rather than a fixed-length bit string. The size
and the shape of the hierarchical computer program that will

ST

IOL

ITF PROG2

IOFFWRM

TL TR

IOL

S0 S8 L1 L8...... ......

Perceptron

Genetic Program

Figure 1: An example of a robot control program repre-
sented in a GP tree. The tree denotes the control strategy: ‘If
Obstacle is located Left then do [If Obstacle is located Front
then Stop else Random Move] else do [Move Forward] and
[If Obstacle is located Front then Turn Left else Turn Right]’.
Function nodes are represented as circles and implemented
as perceptrons as shown in the box.

solve a given problem are generally not known in advance,
and it is difficult, unnatural and constraining to represent hi-
erarchical computer programs of dynamically varying sizes
and shapes with fixed-length bit strings [1].

Robot control programs can be constructed by a hier-
archical structure of basic functional modules. When de-
signing this structure, it is impossible or very difficult to
have complete information about the given environment in
advance. Thus, the distingushing feature of GP in evolv-
ing tree structures of dynamically varying size and shape
can be very useful to design robot controllers. Moreover,
basic modules and hierarchical association between them
is more easily represented by function nodes and terminal
nodes structure of GP trees rather than GA bit strings.

In our work, each function node represents a state-
decision rule such as ‘if the obstacle is located to the left’or
‘if the target object is located behind the robot’. These
symbolic expressions are useful for designing a high-level
planner, but realization in hardware needs more tedious and
complicated work. Usually these expressions are imple-
mented as a program module consisting of hand-coded if-
then rules based on unreliable heuristics of the designer.
Since this method is weak and inflexible to the change of the
environment and it is difficult to find proper parameters, we
adopt single layer perceptrons as state-decision rules instead
of using hand-coded state-decision rule. This approach pro-
vides the robot with learning ability as well as a method to
find proper sensor combinations and associated parameters.
The perceptron consists of 16 input nodes which take nor-
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malized sensor input values and a single output node which
reports whether the representing condition is satisfied. In
this way, the function nodes can learn to determine the par-
ticular state in given environment. Terminal nodes are in-
terpreted as action command such as ‘Go forward’, ‘Turn
right’, or ‘Stop’.

4. Experimental Setup

4.1 The Khepera Robot

The Khepera robot has 8 infrared sensors for proximity
measurement, 8 light sensors for measuring ambient light,
and two motor-drived wheels for movement. Figure 2 shows
the robot equipment in the Khepera simulator [3]. The sim-
ulator has the same equipments as those of the real Khepera
robot.

Figure 2: The Khepera robot in the Khepera simulator.

The 8 infrared sensors detect the proximity of objects in
front of it up to 5 cm by reflection of infrared rays. Each
sensor returns a value ranging 0 � 1023, where 0 means
that no object is perceived while 1023 means that an object
is very close to the sensor. These sensors can also measure
the level of ambient light around the sensor. It returns a
value between 0 � 525, where 0 corresponds to maximum
brightness, 525 to maximum darkness. Robot movements
are carried out by controlling left and right motors, which
can take value within the range of -10.0(back)� +10.0(for-
ward). To approximate real environments, the simulator
adds random noise of �10% to the proximity sensor out-
put and �5% noise to the light sensor output. Also, motor
amplitude and direction commands are realized with distor-
tion of �5% � �10%.

4.2 Learning and Evolution

As mentioned above, table 1 shows the function and ter-
minal symbols used in our genetic programs. All function
nodes are implemented as single-layer perceptrons except
the PROG2 element. Each perceptron consists of 16 input
units and 1 output unit. All input units are fully connected
to the output unit. The 8 input units take 8 proximity sen-
sors (in Figure 2, S0 � S7) and normalize 0 � 1023 sensor
output values to 0.0 � 1.0. The other 8 input neurons take

8 light sensors (in Figure 2, L0� L7) and normalize sensor
output values to 0.0� 1.0.

The output neuron’s activation function and weight up-
date rule is as follows:

o(~x) = ~w � ~x (1)

~w  ~w + �(t� o)~x; (2)

where o is the output value, ~w is the weight vector, ~x is the
input vector, t is the target value, and � is the learning ratio
of 0.1.

The robot learns perceptrons first. Examples consist of
sensor data, target value (if the condition is met then +1.0,
else -1.0) and are sampled arbitrarily in the simulated en-
vironment. About 1000 examples were used in perceptron
learning.

After the perceptron learning phase is completed, the
procedure of evolving robot control programs begins. A
robot control program is represented as a GP tree, which is
composed of function nodes and terminal nodes. Maximum
depth of trees is 10. Each function node denotes a situa-
tion decision rule, and each terminal node denotes an action
command. When perceptrons complete learning, they play
the role of function nodes in the GP trees. The evolution-
ary process starts by selecting one individual from the initial
population. The selected control program is executed for a
given number of move steps and then the fitness value of the
current individual is evaluated by the following formula:

F (i) = w1

Ci

S
+

S � w2Hi

S
; (3)

where S is the step number per life cycle(= 2000 steps), C i

is the number of times the robot collides with the obstacles,
Hi is the number of times the robot approaches the target
object, andw1, w2 are the weight parameters. These param-
eters are fixed as w1 = 1:0, w2 =

S

10
through experiments.

The fitness measure consists of two terms: the first term
is the collision ratio during a life cycle, the second is the hit
ratio which reflects how often the robot achieves its goal,
i.e. how often the robot reaches the target object without
collision. Since we want better individuals to have lower
fitness values, the number of hits should be subtracted from
step counts. Weight parameters are multiplied to increase
the convergence speed.

After evaluation, another control program in the popula-
tion is selected and the robot is controlled by it. After all
the individuals have been evaluated, we select the best 50%
of the population by the uniform ranking selection method,
and apply them to genetic operators such as reproduction,
crossover, and mutation to create offspring for next gener-
ation. Reproduction, crossover, and mutation rates are 0.1,
0.8, and 0.1, respectively. The population size is 100 and
the best individual from generation is always retained in the
next generation (elitism).
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Figure 3: Illustrative snapshots of the simulation environ-
ment (top left), the trajectory of the best individual in the first
generation (top right), the best individual in the 50th genera-
tion (bottom left), and the final best individual (bottom right).

Throughout the perceptron learning and the evolutionary
process, the same simulation environment has been used.
The environment consists of surrounded walls as obstacles
and two lamps as targets in the rectangle dimension of 1m
� 1m.

After evolution, we transferred the evolved program to
the Khepera robot in real world. The size of the experi-
mental environment is identical to the simulation environ-
ment, 1m � 1m. However, the configuration is slightly dif-
ferent. Major troubles in real world experiments are ambi-
ent light. Contrary to the simulation environment where the
ambient light source is only the inserted lamps (the target
in the learning phase), the real environment is full of light
sources such as the sun and indoor lights. Though we had
much trouble with such ambient lights, we could not inter-
cept the lights because we had to record the experimental
procedure with a video camera to analyse the behavior of
the robot. Thus the threshold of the perceptron was needed
to be adjusted to draw a proper decision.

5. Experimental Results

The environment and some illustrative trajectory snap-
shots of the robot during the evolutionary process are shown
in Figure 3. The change of fitness and performance during
the evolutionary process are shown in Figure 4, 5, 6.

For the first 100 generations, both of the average fitness
and the best fitness were improved (Figures 4 and 5). As
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Figure 4: Fitness of the best individual at each generation.
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Figure 5: Average population fitness at each generation.

you can see, from the 10th generation the fitness value of
the best individual reaches as low as that of the final gen-
eration, yet showing a heavy fluctuation. Though the best
individual was retained at each generation, the same control
program can exhibit different fitness values between the tri-
als because the fitness measure depends on the performance
of it, not on the structure of the control program itself. How-
ever, from about 70th generation fluctuation decreases and
the fitness value becomes stable, resulting the convergence
of most individuals in the population to a stable state.

The average number of hits also increases steadly for the
first 100 generations, while the collision count shows no sig-
nificant change (Figure 6). Thus the ratio of hits to collision
frequency steadly increased.

Figure 7 shows the environment in which the real Khep-
era robot has been operated with its trajectory controlled by
the evolved program. The distal position changes to the tar-
get are presented along time (Figure 8). The target object is
a lamp located in top–left corner. The trajectory shows how
the robot find its way to the target.

6. Conclusion

We designed a method for evolving robot control pro-
grams using genetic programming. Our GP architecture
provides a good robot behavior coordinator which can eas-
ily represent hierarchical symbolic rules between the basic
modules with ability to adapt to a given environment. In-
stead of using predefined symbolic expressions as the func-
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Figure 6: Change of the average number of collisions and
the average number of hits.

Figure 7: A trajectory of Khepera controlled by an evolved
neurogenetic program.

tion set in GP trees, we used single-layer perceptrons as the
elements of the function set during evolution. It provides a
method to bridge the gap between symbolic representation
used in the control programs and the sensor outputs of the
robot hardware.

Evolution was carried out on the real-value based Khep-
era simulator, which is more realistic and easier to transfer
results to the real robot hardware than the simple grid-based
simulator. Evolved results showed that genetic programs
could find behavior rules which were suitable for perform-
ing the given task. Then, we transferred the evolved pro-
gram to the real Khepera robot. Though the simulation envi-
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Figure 8: Distal position change along time (averaged over
5 trials).

ronment and the real environment were different, the robot
could avoid obstacles and find the target to reach. Since
the evolved control programs are composed of simple basic
modules, they exhibited real-time performance, which are
inherent strengths of behavior-based robot. These results
demonstrate that our architecture has a potential for im-
plementation of behavior-based adaptive robots in the real
world in learning proper behavior rules with little domain-
specific knowledge.

Future work includes co-evolving the function set and
the control programs and devising method for evolving
more complex behaviors by concatenating several evolving
control program modules.
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