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ABSTRACT.  

 
In this paper a classical AI problem is proposed to be solved by DNA computing: theorem proving.  Since 
the complexity grows exponentially with the size of the problem, the solving process should be done in 
parallel.  Massive parallelism is one of the advantages of DNA computers. It will be shown that the 
resolution refutation proof can be readily implemented by DNA hybridisation and ligation.  Microreactors 
lend themselves to a relatively simple implementation of DNA computing.  Not only is the design of the 
DNA critical for the success of the system but also the architecture of the microfluidic structure.  Here the 
DNA performs the computation, while the microfluidics aids the biochemical steps necessary to manipulate 
the DNA, i.e. hybridisation and ligation. 
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1. INTRODUCTION 
 
Biomolecular computing involves a multi-disciplinary approach consisting of molecular biology, 
microsystems, sensing and information technology.  It uses biological macromolecules, such as DNA, to 
perform selections, simulating the digital information processing procedures.  The largest problem solved 
to date is a 20-variable instance of a SAT problem [1].  Alternative approaches incorporated, among others, 
RNA [2], self-assembly [3] and pipetting robots [4]. 
Microflow structures provide control over the flow of solutions, i.e. the flow of information [5].  The 
advantages of this technology are, for example, the use of small volumes of biological solutions, which are 
in the nanoliter range, and increased reaction rates due to reduced diffusion time.  Furthermore, microflow 
structures can be designed to be problem-specific or re-configurable [6, 7].  By using valves and pumps in 
the fluidic network, the computer architecture can be problem independent [8] and autonomous. 
In the past, many researchers have utilised the massive parallelism of DNA computers to solve hard 
computational problems [9, 10, 11, 3, 7, 18]. Recently however, several research groups have proposed 
DNA computing methods for logic reasoning [12, 13, 14, 15, 6, 10, 16, 17].  Here we look at a more 
traditional AI problem to solve.  Theorem proving is a method of logic reasoning from the propositional 
logic.  It has a variety of applications, including diagnosis and decision making [16, 17, 8, 11].   
A way to prove a theorem is by resolution refutation which is a general technique using a given set of 
axioms and rules.  However, if the proposition becomes to complex or the number of axioms to large, the 
problem grows exponentially over time.  To overcome this drawback, parallel theorem proving methods 
have been proposed [18, 19, 20, 5, 9, 15]. However, these theories do not overcome the difficulties inherent 
to silicon-based technology.  DNA molecules, however, could solve this problem. In this paper, we give a 
short introduction to theorem proving be resolution refutation, a description of the experimental procedure 
and the design of the microsystem to be used.  

 
 

 
 



2. THEOREM PROVING BY RESOLUTION REFUTATION 
 
Theorem proving is a method for automated reasoning [16, 17].  In this section, propositional logic, 
resolution principle and resolution refutation will briefly be described. 
Propositional logic formula consists of Boolean variables and logic connectives.  A Boolean variable is a 
variable which can be either T (TRUE) or F (FALSE).  Among the basic logic connectives are ∧ (and, 
logic product),∨ (or, logic sum), ￢ (not, negation) and → (implication). A Boolean variable or its 
negation is called a positive literal resp. negative literal.  It has been proven [21] that any connective can 
be expressed by using only the ∧, ∨, and ￢ operators.  For example, A → B can be written as ￢A ∨ B 
for any Boolean variables A and B.  To prove theorems using resolution refutation, every formula must be 
expressed in a so called clause form. A clause form in propositional logic is defined as follows: 
 
(clauseform) := (clause) ∧ (clause) ∧ · · · ∧ (clause) 
(clause) := (literal) ∨ (literal)∨ · · · ∨ (literal) 
 
A clause with no literal is called an empty clause. 
The basic idea of refutation is to show that the negation of the conclusion is inconsistent with the premises.   
If true, an empty clause will remain.  The outcome of the resolution is called a resolvent. 
 

 
Figure 1. A proposed problem in theorem proving using resolution refutation.  Here R is the premise. 
 
Figure 1 shows an example of theorem proving by resolution refutation.  The set of formulas ∆ = {P ∧Q 
→ R, S∧T → Q, S, T , P } is given.  It should be proven that the premise R is consistent with ∆.  ∆ is 
converted to the conjunction normal form by using associative and distributive laws, after which the set of 
clauses are written as {￢P ∨￢Q∨ R,￢S ∨ ￢T ∨ Q, S, T , P}.  The negation of R, i.e. ￢R, is added 
to prove the possible inconsistency.  Each box in Fig. 1 contains one clause.  The clauses and their 
resolvents are connected with arrows. Resolving on P  from ￢P ∨ ￢Q ∨ R and P results in￢Q ∨ R.  
This process can be continued until an empty clause is produced, denoted by the symbol nil. 
The above theorem proving process becomes more complex as the number of formulas grows. In 
propositional logic, the literal to resolve on must be decided.  Therefore, if there are n different literals, 
there are n! different theorem proving processes with n! = O(nn) according to Stirling’s approximation. 
Thus, the complexity of proof grows exponentially with the number of literals. As already has been 
mentioned, one way to overcome this problem of complexity is to use a representation in DNA molecules. 

 
 

 
 



3. THEOREM PROVING USING DNA  
 
In [22], a method using representation in DNA molecule is proposed to solve the theorem proving problem 
effectively. A brief description to the method is given here before introducing the design of the 
microreactor system for the method. (I inserted this paragraph to make sure that the scope and main result 
of this paper is the design of microreactor system not the molecular theorem proving method. I also think 
this section is too long compared to the next section which is about the microsystem – the main content.) 
In this method [22],  the literals, and therefore the formulas, are represented by short single stranded DNA 
sequences.  The negations of the literals are represented by the complementary sequence of the positive 
literals. 
 

 
Figure 2. An example coding for a Boolean variable and its negation (The arrows are from 5’ to 3’). 
 
Each literal has the same sequence length, in this case 4 nucleotides. An example of two Boolean variables 
and their negations are shown in Fig. 2.  And each clause is represented by the concatenation of the 
sequences for the literals contained in the clause. 
Resolution of a variable between two clauses is represented by the hybridisation of the two short DNA 
sequences corresponding to that literal in each clause.  For example, when a variable v is resolved from 
clauses A and B, the DNA sequences and its complementary corresponding to v or￢v in each clause 
hybridise. Therefore, if the resolvent is an empty clause, none of the DNA sequences representing the 
literals will remain single-stranded.  Afterwards the nicks in the hybridisation products are ligated.  The 
verification of the existence of a blunt ended double stranded DNA molecule with a defined size, which 
represents the empty clause, proves refutation has worked. Finally, the result is examined by PCR and gel 
electrophoresis [22]. 
The experimental steps are summarized as follows (see Fig. 3): 

1. Mix the clauses. 
2. Hybridise the DNA sequences to perform resolution. 
3. Ligate the hybridised products for easier screening of the proof. 
4. Perform PCR amplification of the ligation products. In this step, only the ligation product which 

is a valid proof can be amplified, due to the primer choice. 
5. Perform gel electrophoresis to detect the proof, if any.  

 



 
Figure 3. Theorem proving by refutation, where each literal is represented by a 4 nt sequence.  Only when all the 
literals and their negations are present will there be a blunt ended double stranded DNA.  (The arrows are from 5’ to 
3’.) 

 
 

4. THE MICROSYSTEM 
 
To perform step 1, 2 and 3 as described above in microfluidics a mixing device is needed in which DNA 
and ligation enzymes can be mixed.  As is well known in microfluidics, mixing is a well-known problem 
as laminar flows only mix by diffusion. However, with the PDMS (Polydimethylsiloxane) valve technology 
developed in Steve Quake’s lab [23], it is quite simple and very effective to construct a mixing chamber.  
These valves can be used to regulate the inputs and output (see Fig. 4a).  Furthermore, by also using the 
PDMS valves, a peristaltic pump was fabricated to produce which pumps the solution around a circular 
channel (Figs. 4c and d).  Due to the parabolic flow profile in a pressure driven flow, mixing is imminent. 
Two input channels are needed for a separate input of DNA and the ligation enzymes.  These channels can 
be closed by a valve just before the mixing chamber.  By opening these valves, the chamber can be filled.  
By closing the valves of the input and output channels, the mixing chamber is sealed off from the rest of the 
system and mixing can commence.  The pump section is made of 3 PDMS valves which circulate the 
solution within the mixing chamber.  At high speed, only a few seconds is necessary for mixing.  After 
mixing, the output channel is opened and the solution can flow over functionalised beads.  Figure 5b 
shows the complete structure of the ligation module in PDMS. After the ligation there will still be products 
left with so called sticky ends, i.e. double stranded DNA molecules with a single stranded overhang, caused 
by missing literals and therefore not representing the correct answer to the problem.  These can be filtered 
out by using functionalised beads that recognise the patterns of 4 nt long DNA sequences.  To do so, the 
output of the mixer is opened and the solution flows into a column packed with the beads, held in place by 
another set of valves [23] (Fig. 4a).  The degree to which the channel is closed depends on the pressure 
applied to the valves.  By allowing the valve to close partially, beads are captured while the flow could 
continue, turning these valves into bead barriers. 
The device was made in 2 layers of PDMS (Sylgard 184, Dow-Corning, MI), the fluidic and the pneumatic 
layer.  A thin layer of PDMS, for the valves [24], with a mixing ratio of 1:20 (curing agent to base) was 
spin-coated on a 2” silicon wafer containing the master with the fluidic channels to obtain a thickness of 
approximately 40 µm.  A thicker layer for the pneumatic layer, about 10 mm, of PDMS with a ratio of 1:5 
was poured onto the mask in a petri dish. 
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Figure 4. (a) An overview of the ligation module, containing 3 inputs, 9 PDMS valves and 1 output.  Before the output 
is the filtering section, where beads are retained between 2 valves (Ia and Ib), while the 3rd input (Ic) is used as bead 
delivery channel.  (b) shows the module in PDMS.  (c) The mixer with 2 dyes in unmixed stage.  (d) after the 
peristaltic pump (the group of 3 valves) has operated, the dyes are mixed. 
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After degassing and curing for 35 minutes at 65 °C, the thick layer was cut out and small holes were 
punched (Technical Innovations Inc., TX, USA) for the inlets to the PDMS valves.  After cleaning the 
layers with action and iso-propanol, the channel layer was aligned with the valve layer under a stereo-
microscope and replaced in the oven for at least 2 more hours.  Hereafter the fluidic inlets and outlets were 
punched.  Tubing (Fisher Scientific, PA, USA) was connected via small metal tubing (New England Small 
Tube Corporation, NH, USA) inserted in the inlets to pressurized syringes (5 PSI) and the PDMS valves 
were operated with pressurized air (30 PSI) and solenoid valves (Lee Co., USA) controlled with LabVIEW 
(National Instruments, USA) with a DAC-board (NI PCI-6533, National Instruments).  Transistor 
switching boards (Comfile Technology, South Korea) where used to switch the 12V solenoids with a 5V 
TTL-signal.  The pressured air was obtained from the laboratory’s outlet and down regulated using mini 
pressure regulators.  When pressure is applied, the membrane is pushed into the underlying channel, 
effectively blocking the flow. 
The results of the hybridisation and ligation in the microfluidic system will be published elsewhere. 

 
 

5. CONCLUSION 
 
Microfluidic systems have a great advantage in DNA computers.  The biochemical reaction rates are much 
faster in test tubes, while the amount of consumables is in the nanoliters.  Furthermore, methods were 
presented for the encoding of clauses with DNA molecules with which theorem proving problems could be 
solved, by using simple biochemical techniques.  And with the presented method the number of 
experimental steps does not vary with the problem size.  The presented ligation module will prove to be a 
valuable asset to miniaturising the chemical lab and to DNA computing problems incorporating ligations. 
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