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ABSTRACT

Motivation: An important issue in stem cell biology is to understand

how to direct differentiation towards a specific cell type. To elucidate

the mechanism, previous studies have focused on identifying the

responsible gene regulators, which have, however, failed to provide

a systemic view of regulatory modules. To obtain a unified descrip-

tion of the regulatory modules, we characterized major stem cell

species by employing a co-clustering latent variable model (LVM).

The LVM-based method allowed us to elucidate the cell type-specific

transcription factors, using genomic sequences as well as expression

profiles.

Results: We used a list of genes enriched in each of 21 stem cell

subpopulations, and their upstream genomic sequences. The LVM-

based study allowed us to uncover the regulatory modules for each

stem cell cluster, e.g. GABP and E2F for the proliferation phase, and

Ap2a and Ap2g for the quiescence phase. Furthermore, the identities

of the stem cell clusters were well revealed by the constituent genes

thatweredirectly targetedby themodules.Consequently, our analytical

framework was demonstrated to be useful through a detailed case

study of stem cell differentiation and can be applied to problems with

similar characteristics.

Contact: btzhang@bi.snu.ac.kr, rhseong@snu.ac.kr

Supplementary Information: Supplementary data are available at

http://bi.snu.ac.kr/Publications/LVM_SC/.

1 INTRODUCTION

To make good use of stem cells in clinical applications, it is nec-

essary to comprehend the mechanisms by which stem cells operate.

Among the diverse investigations into this, it is crucial to identify

core stem cell regulators. Stem cells are quite different from other

cell types in nature, especially in the aspect of pluripotency and self-

renewing capability. Thus, the transcriptional profiles of stem cells

are expected to provide the molecular evidence that may account for

stem cell character. The three most intensely studied stem cell

species [embryonic (ESCs), neural (NSCs) and hematopoietic

stem cells (HSCs)] were previously analyzed for gene transcription

(Ivanova et al., 2002; Ramalho-Santos et al., 2002; Venezia et al.,

2004). The data provide useful source material for identifying stem

cell regulatory networks.

Since the core properties of stem cells are likely to be shared by

various stem cell species, a circuitry of global regulation as well as

the gene regulators specific to individual stem cell species may also

exist. An underlying assumption is that stem cell genes are con-

trolled by the gene regulators that mediate phenotypic changes.

Among them, transcription factors (TFs) have been reported to

play a major part in lineage commitment and stage progression

of stem cells, by directly modulating patterns of gene expression

(Reid, 1990). Furthermore, several master regulators turn on addi-

tional transcription factors that are responsible for activating entire

networks of genes necessary for generating many different special-

ized cells and tissues (Boyer et al., 2005).
As high-throughput technologies such as microarrays are intro-

duced, it is possible to measure the abundance of mRNA on a

whole-genome scale. Previously, molecular studies for under-

standing the stem cell character have usually depended on the

data obtained from large-scale gene expression analysis. How-

ever, most of the results were confined to the own interests of the

researchers. In addition, they barely provided critical evidence for

the gene regulation mechanisms. This may be attributed to the

lack of a decisive method of identifying genuine regulators out of

a number of candidate genes.

We propose an approach based on co-clustering latent variable

models (LVMs) to identify stem-cell-specific regulatory modules

from integrated experimental datasets. The LVMs have been quite

successful in detecting hidden patterns in biological profiling data

(Zhang et al., 2003; Flaherty et al., 2005). We adapted the proba-

bilistic latent semantic model (PLSA) (Hofmann, 2001), which is

one of the LVMs, to cluster simultaneously both rows and columns

of a subpopulation-TF binding site (TFBS) matrix. Compared with

the standard clustering algorithms such as k-means and hierarchical

clustering (Eisen et al., 1998), the co-clustering LVMs can reveal

more flexibly the association between two objects (i.e. rows and

columns) (Bishop, 1999). Moreover, since most co-clustering algo-

rithms known as hard clustering techniques (Madeira et al., 2004)
work on the basis of mutual exclusivity (Flaherty et al., 2005), they
seem inappropriate to represent the biological regulatory systems

that frequently share the core elements. On the other hand, the

co-clustering LVM is an effective algorithm in that it does not

only permit an element to belong to several different clusters but

also finds the modular structure that is constituted by a highly
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probable relationship between objects. Here we define the regula-

tory module of stem cells as a set of transcriptional regulators

specified to the individual stem cell species.

By the integrative analysis of multiple experiments, our work will

contribute to effectively identifying stem cell regulatory modules.

Several representative regulators were retrieved in each stem cell

cluster, and their relationships showed high relevance to the bio-

logical literature. The Gene Ontology of the regulated genes also

supported the predicted relationships. In addition, the modularity

was validated by the expression coherence of the regulated genes. In

this report, we provide a comprehensive map of regulatory mecha-

nisms of the major stem cells.

2 METHODS

The overall scheme of the strategy is illustrated in Figure 1. We attempt to

cluster TFBSs and stem cell subpopulations simultaneously. First, the gene

sets representing major stem cell populations were collected from micro-

array data (which will be described in detail). Next, the dataset of upstream

sequences was extracted from murine genomic archives. The dataset was

searched for cis-acting elements that were in the form of position-weighted

matrices (PWMs). Then, a stem cell subpopulation-TFBS matrix was

generated and clustered by the latent variable models.

2.1 Collection of gene sets representing major

stem cell populations

Our collection of gene sets representing various stem cell populations was

gathered from gene sets selected previously by three research groups based

on a significant fold change from expression profiles of major murine stem

cell populations (Table 1; Ramalho-Santos, 2002; Ivanova, 2002; Venezia,

2004). Details for each selected gene set are addressed in the supplementary

data of the three references. There are 21 subpopulations categorized by cell

phenotypes or development stages, which comprise three major stem cell

sets, HSC maturation sets and HSC cell cycle sets. Two stemness sets were

also obtained from the datasets of murine ESC, NSC and HSC, which were

produced by two prominent research groups. Depending on the maturation

status, the HSCs were subdivided into several subsets. In addition, the genes

activated during the proliferation phase of HSCs were comparatively

analyzed with the deactivated genes. The former belong to the subpopula-

tions FL, ST and PG, the latter to BM, LT and QG.

2.2 Screening transcription factor binding motifs

To extract the dataset of upstream regulatory sequences, murine genomic

archives (ftp://hgdownload.cse.ucsc.edu/goldenPath/mm5/) were retrieved.

They contain 17 848 of the murine RefSeq and 41 208 entries for the Known-

Gene. After subsequent refining processes, we obtained 23 346 independent

entries. With transcription start sites (TSSs) of these genes, upstream

sequences were extracted from the mouse genome (assembly mm5). The

5 kb upstream regions of the 23 346 genes were extracted using a standalone

version of BLAT (Kent, 2002).

We used 360 PWMs of the TRANSFAC r8.3 (Matys et al., 2003) to

extract TFBSs in mouse upstreams. The putative TFBSs on each sequence

were scanned by the program Patser (Hertz and Stormo, 1999), and matching

positions were returned and scored. Patser was run with the following com-

mand line options: ‘–A a:t 0.275 c:g 0.225 –c –lp –13.0’. Here, the –A was

used to provide the following background frequencies: A/T ¼ 0.275, G/C ¼
0.225. –c is for scoring the complementary strand, and –lp is to determine the

lower threshold score from a maximum ln ( p-value). A detailed procedure is

given in Supplementary Material.

2.3 Co-clustering latent variable models

Our goal was to cluster stem cell subpopulations and TFBSs from the given

matrix simultaneously. We assume that the matrix consists of weights of

m TFBSs in n subpopulations. When the dataset is represented by a set of

m of TFBSs, T ¼ { t1, t2, . . . , tm}, and a set of n subpopulations, S ¼ { s1,

s2, . . . , sn}, it can be viewed as an subpopulation-TFBS matrix, ST¼ [ w( ti,

sj)]. Here w( ti, sj) denotes the weight of the i-th TFBS in the j-th sub-

population. Each weight indicates the measure that the i-th TFBS affects j-

th subpopulation. We calculate the ratio between the occurrence probability

of the subpopulation and that of the total set using the following equation:
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Fig. 1. Schematic flowdiagramof co-clustering stemcell subpopulations and

transcriptional regulators.

Table 1. Stem cell subpopulations

Subpop. Description #Gene

SE Embryonic stem cells (Ramalho-Santos, 2002) 1465

SN Neural stem cells (Ramalho-Santos, 2002) 1930

SH Hematopoietic stem cells (Ramalho-Santos, 2002) 1731

IE Embryonic stem cells (Ivanova, 2002) 1459

IN Neural stem cells (Ivanova, 2002) 1274

IH Hematopoietic stem cells (Ivanova, 2002) 1484

SS Stemness (Ramalho-Santos, 2002) 206

IS Stemness (Ivanova, 2002) 97

SU Stemness (Ramalho-Santos and Ivanova, 2002) 422

LT Long-term HSCs (Ivanova, 2002) 578

ST Short-term HSCs (Ivanova, 2002) 226

BM Bone marrow stem cells (Venezia, 2004) 922

FL Fetal liver stem cells (Venezia, 2004) 749

QG Quiescence group (Venezia, 2004) 718

PG Proliferation group (Venezia, 2004) 609

QS Quiescence signature (Venezia, 2004) 271

PS Proliferation signature (Venezia, 2004) 304

EP Early progenitors (Ivanova, 2002) 498

IP Intermediate progenitors (Ivanova, 2002) 170

LP Late progenitors (Ivanova, 2002) 549

MBC Mature blood cells (Ivanova, 2002) 488

There are 21 subpopulations categorized by cell phenotypes or development stages,

which comprise three major stem cell sets, mHSC maturation sets and HSC cell

cycle sets.
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eij ¼ ð f Subij /NSubÞ/ð f Totalij /NTotalÞ. Here #NTotal and #NSub are the number of

total genes and subpopulation genes, respectively. f Totalij and f Subij are the fre-

quencies of TFBSs observed in the entire set and the subpopulation, res-

pectively. The matrix has values from 0 to 6.7.

We assume that there exists a set of hidden (unobserved) factors under-

lying the co-occurrences among sets of subpopulation and TF. Introducing

latent factors #Z¼{#z1, #z2, . . . , #zl}, the model measures the relationships

between TFBSs and hidden factors, as well as between subpopulations and

hidden factors. We use a modified version of the PLSA model to identify

these relationships (Hofmann, 2001). First we describe the following proba-

bility definition for a generative model: (1) #P(#ti) is the probability that a

TFBS will be observed in #T. (2) #P(#zk j ti) is a TFBS-specific probability
distribution on latent factor #zk. (3) #P(#sj j zk) is the probability of subpopu-
lation over latent factor #zk. Based on these definitions, we obtain the proba-

bility of an observed pair (#ti, sj) by adopting the latent factor #zk as:

Pðti‚sjÞ ¼ PðtiÞPðsj j tiÞ‚

where

Pðsj j tiÞ ¼
Xl

k¼1

Pðsj j zkÞPðzk j tiÞ:

Using Bayes’ rule, the joint probability can be rewritten as

Pðti‚sjÞ ¼
Xl

k¼1

PðzkÞPðsj j zkÞPðti j zkÞ:

In order to find the above parameters, we maximize the total likelihood of

observations:

LðT‚SÞ ¼
Xm

i¼1

Xn

j¼1

wðti‚sjÞlogPðti‚sjÞ:

The standard procedure to estimate maximum likelihood parameters is the

Expectation–Maximization (EM) algorithm. The EM algorithm starts with

random initial parameter values of ,P(,zk), ,P(,sj j zk) and ,P(,ti j zk). Then the

algorithm iterates both an expectation step (E-step) and a maximization step

(M-step) alternately until a certain convergence criterion is satisfied. In the

E-step we compute:

Pðzk j ti‚sjÞ ¼
PðzkÞPðti j zkÞPðsj j zkÞPl

k0¼1 Pðzk0 ÞPðti j zk0 Þpðsj j zk0 Þ

and the M-step is as follows:

PðzkÞ ¼
Pm

i¼1

Pn
j¼1 wðti‚sjÞPðzk j ti‚sjÞPm

i¼1

Pn
j¼1

Pl
k0¼1 wðti‚sjÞPðzk0 j ti‚sjÞ

‚

Pðti j zkÞ ¼
Pn

j¼1 wðti‚sjÞPðzk j ti‚sjÞPm
i0¼1

Pn
j¼1 wðti0 ‚sjÞPðzk j ti0 ‚sjÞ

‚

Pðsj j zkÞ ¼
Pm

i¼1 wðti‚sjÞPðzk j ti‚sjÞPm
i¼1

Pn
j0¼1 wðti‚sj0 ÞPðzk j ti‚sj0 Þ

:

After the total likelihood ,L(,S,T) of the observation data increases mono-

tonically by E-step and M-step, it converges to a local optimum solution.

3 RESULTS

3.1 Co-clustering: stem cell subpopulations and

transcriptional regulators

We obtained a co-clustering profile from the input dataset by

co-clustering LVM. The input dataset was generated in the form

of a [292 · 21] matrix that is referred to subpopulation/TFBS

vectors. Of 360 PWMs, 292 were found to have at least one putative

binding site on the whole promoters.

Figure 2 shows the result obtained by running the co-clustering

LVM with the number of clusters set to 5. Here the number of

clusters was determined so that it satisfies a necessary and sufficient

condition for distinguishing each characteristic cell status, namely

three major murine undifferentiated stem cells, stemness, prolifera-

tion and quiescence phase of HSCs, and the HSC maturation pro-

cesses. Cluster 1 represents the subpopulations associated with

proliferation of HSCs that includes the PS, PG, FL and ST. This

result is perfectly consistent with the previous observation that the

four subpopulations were characterized by the genes that were

activated during HSC proliferation (Venezia et al., 2004). Stemness

subpopulations are all allocated in Cluster 2. It may suggest the

possibility that the two stemness gene sets may be regulated by

common transcriptional regulators, although the two sets share only

a few out of hundreds of genes in common in the microarray data.

Cluster 3 contains those related to quiescence in cell cycle of

HSCs, namely the QS, LT, BM and QG. Besides, this cluster also

has two subpopulations representing whole HSCs, suggesting that

the general characteristics of HSCs may mainly display quiescence

rather than their proliferation properties. Clusters 4 and 5 represent

two hematopoietic progenitors. IP is assigned to Cluster 4 with two

non-HSC subpopulations from the Ramalho-Santos data. This

means that the transcriptional regulators may be shared between

the unrelated adult stem cells, possibly suggesting their trans-
differentiation potential.

Table 2 shows the top-ranked 5% of TFBSs for each cluster sorted

by decreasing probability. Each cluster shows the representative

TFBS profile, with some TFBSs being found in more than one

cluster. Five TFBSs are assigned with probability >0.08 in three

Fig. 2. Clusters based on latent (hidden) variables. The cell subpopulation is

assigned by probability belonging to several clusters. Each block represents

the normalized fraction in the cluster. The darker block indicates a higher

probability. Each cluster exhibits representative subpopulations: Cluster 1 is

closely related to subpopulations associated with mHSC proliferation;

Cluster 2, stemness related subpopulations; Cluster 3, quiescence phase of

mHSC; Clusters 4 and 5, hematopoietic progenitors.
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clusters: Egr2, Gata6, Pax8, CREB and CRE-BP1. A total of

14 TFBSs are in two clusters: Oct1, FoxO1, BSAP, Egr1, E2F,
IPF1, STAT3, c-Myb,HIF1,GATA1,GABP,N-Myc and c-Myc:Max.

3.2 Identifying stem cell regulatory modules

Using the resultant clustering information, we constructed a rela-

tional network for TFBSs and stem cell subpopulations. Conditional

dependencies between the stem cell subpopulations and TFBSs

were incorporated in the model. Significant links were selected

by p-value cutoff: only 22 of 75 TFBSs, showing high probability

( P( ti j zk) > 0.008, the minimum cutoff for allocating at least

10 TFBSs to each cluster), have p-value < 0.015 (the minimum

cutoff for at least one link to each subpopulation). Generally, a few

key TFs are believed to have a major influence on controlling cell

fate, though more TFs should be identified to fully characterize a

cell state. As each cluster represents a specific status of stem cell

differentiation, a candidate pool comprising more than 10 TFs will

be sufficient to explain a status of stem cells. At the selected thresh-

old, the regulatory modules were well illustrated as in Figure 3. It

depicts stem cell regulatory modules that were reconstructed based

on the statistical significance of the co-clustering data. This network

may provide core TFs representing or regulating stem cell sub-

populations. Table 3 presents the summarized descriptions on the

representative TFs regulating each cluster.

Cluster 1: proliferation phase in HSC maturation. GABP showed

relatively higher significance in this cluster. Embryos with null

GABPa allele die before implantation, being consistent with the

broad expression throughout embryogenesis and in ESCs (Ristevski

et al., 2004). During liver regeneration, the expression of GABPa/
GABPb heterodimer increased considerably (Du et al., 1998).
These results provide a clue that GABPa may play essential

roles in the proliferation of diverse tissues including HSCs. E2F
family TFs are well known to play essential and redundant roles in

the proper coordination of cell-cycle progression. The combined

loss of E2F1 and E2F2 in mice leads to profound cell-autonomous

defects in the hematopoietic development of multiple cell lineages

(Li et al., 2003). NF-Y is essential for the recruitment of RNA

polymerase II onto E2F1 promoter (Kabe et al., 2005). From its

E2F1 activating potential, it is likely that E2F is activated by NF-Y
during embryogenesis or tissue development.

Cluster 2: stemness. The pooled stemness set SU is shown to be

regulated by Egr2, CREB, CRE-BP1 and Ap2. A signal from

insulin/IGFs to CREB determines cell size and animal size during

embryogenesis (Sordella et al., 2002). CRE-BP is crucial for HSC

self-renewal. Meanwhile, its paralogue p300 is essential for proper

hematopoietic differentiation (Rebel et al., 2002). Interactions

between Ap2a and p300/ CRE-BP are necessary for Ap2a-medi-

ated transcriptional activation (Braganca et al., 2003). Ap2 is

responsible for maintaining proliferative and undifferentiated states

of cells, which are important for embryonic development and in

tumorigenesis (Jager et al., 2003).
Cluster 3: quiescence phase in HSC maturation. Oct1-deficient

embryos die during gestation, frequently appear anemic and suffer

from a lack of erythroid precursor cells (Wang et al., 2004). On the
other hand, tissue-specific expression of Oct1 isoforms in lympho-

cytes may be related to B- and T-cell differentiation and expression

of the immunoglobulin genes (Pankratova et al., 2001). This evi-
dence indirectly supports the possibility that Oct1 may function

specifically during the differentiation of HSCs to a variety of sub-

lineages, not in HSC repopulations.

Cluster 4: intermediate progenitors in HSC maturation. HSC
repopulating and self-renewal capacity is enhanced in the absence

of C/EBPa. Disruption of C/EBPa blocks the transition from the

common myeloid to granulocyte or monocyte progenitors (Zhang

et al., 2004). It also results in hyperproliferation of hematopoietic

Table 2. List of TFBSs ranked within top 5% in cluster

I II III IV V

1 E2F GATA6 Pax6 Tax/CREB Ncx

2 E2F1 CREB Pax8 RFX1 GATA6
3 GATA6 AhR:Arnt AP2a HIF1 c-Myc:Max

4 HSF1 HSF2 AP2g MEF2 HNF1

5 GABP Pax5 Whn ATF4 STAT5A

6 Pax5 Egr2 NFkB IPF1 Ebox
7 c-Ets1(p54) c-Myc:Max Oct1 E2F USF

8 Tst1 ATF1 TATA TATA c-Myb

9 Pax8 HIF1 N-Myc c-Myb GCM
10 NF-Y Pax8 Pax1 CREB E12

11 CEBP AP2 c-Myb HSF NF1

12 USF AhR Arnt C/EBPa SRF

13 HES1 GATA1 AP1 CRE-BP1 CREB
14 c-Myc:Max Oct1 CREB N-Myc CRE-BP1

15 FOXJ2 c-Myb AP2 GABP p53

The corresponding TFs affect gene expression in each cluster. Each cluster shows

a distinct TFBS representation.
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Fig. 3. Stem cell regulatory modules. The links between stem cell subpopu-

lations and TFBSs in clusters are made according to p-value, which was

calculated by hypergeometric probability law. Links of p-value < 0.015 were

selected to depict the diagram. Out of 75 TFBSs showing high probability

(P(ti j zk) > 0.008) 22 have p-value < 0.015. The strength of the links is

indicated by the relative thickness of the lines. Based on the thickness,

p-values for the solid lines correspond to p < 10�2, p < 10�3 and p < 10�5

respectively and the dotted line to p > 10�2.
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progenitor cells (Heath et al., 2004). Thus, these results support

a role for C/EBPa in the differentiation of cells in the IP stage.

Meanwhile, GABP, GCNF, Egr2, CREB and CRE-BP1 are

enriched in ESC and NSC. GABP, which was emphasized in Clus-

ter 1, is also associated with ESC and NSC. This may imply its

global function in various stem cell species. GCNF, STAT1 and

CREB are widely known to be involved in neural development. The

level of GCNF is critical for differentiation and maturation of

neuronal precursor cells (Sattler et al., 2004). The brain in

GFAP-IFNa mice lacking STAT1 had neurodegeneration, inflam-

mation and calcification with apoptosis (Wang et al., 2002). Mice

lacking CREB in the CNS during development show extensive

apoptosis of postmitotic neurons (Mantamadiotis et al., 2002).
Cluster 5: Early progenitors in HSC maturation. E12 is a mem-

ber of the E 2A TF family. E2A-deficient hematopoietic progenitor

cells reconstitute the T, NK, myeloid, dendritic and erythroid lin-

eages but fail to develop into mature B cells. E2A-deficient
hematopoietic progenitor cells remain pluripotent after long-term

culture in vitro, and E2A proteins play a critical role in B-cell

commitment (Ikawa et al., 2004). This suggests that the upregulated
E2A in the early progenitor stage may be responsible for leading the

repopulating HSCs to the B-cell differentiation pathway.

3.3 Functional correlation and expression coherence

of target genes

If stem cell subpopulations and gene regulators are closely

co-clustered, the target genes controlled by their corresponding

regulators may reflect the relevance of the co-clustering data.

We extracted GO terms for target genes (Table 4) using BiNGO

(Maere et al., 2005). As a whole, the target genes in each cluster

apparently belong to characteristic functional categories.

Clusters 1 and 4 are similar in that they cover relatively large

numbers of target genes involved in cell cycle progression. Mean-

while, the two clusters seem to have differential features, namely,

the former is related to chromosome duplication and the latter to

mitotic cell division including cytokinesis. SE and SN may be most

responsible for the cell cycle properties. On the other hand, Clusters

3 and 5 show quite different characteristics. Although Cluster 3, as

well as Cluster 1, also comprises HSC subpopulations, the GO terms

‘cell differentiation’ and ‘development’ may clearly distinguish its

character from that of Cluster 1 representing the self-replenishing

property of HSCs. According to the data presented in Table 4,

‘lymphocyte differentiation and activation’ in Cluster 5 may be

induced by ‘cytokine production’ during hematopoiesis. This

assumption is strongly supported by the ‘cell differentiation’ prop-

erty of the QG and EP (early hematopoietic progenitor) in Cluster 3.

Table 3. The representative TFBSs allocated in each cluster

TF RefSeq ID Reported biological process

Cluster 1: proliferation phase in mHSC maturation

GABP NM_008065 embryogensis; liver regeneration

E2F NM_007891 hematopoietic development;

S phase progression

Ets1 NM_011808 UV-induced apoptosis in ESCs

NF-Y NM_010913 recruits RNA pol II onto E2F1

promoter

Cluster 2: stemness

CREB NM_009952 determines cell size and animal

size during embryogenesis

CRE-BP1 NM_001025432 HSC self-renewal

Ap2 NM_011547 orchestrates embryonic

development by influencing the

differentiation, proliferation,

and survival of cells

Cluster 3: quiescence phase in mHSC maturation

Oct1 NM_011137 differentiation of erythroid lineage,

B- and T-cell

Cluster 4: intermediate progenitors in mHSC maturation

C/EBPa NM_007678 transition from the common

myeloid to the granulocyte/

monocyte progenitor

GCNF NM_010264 early mouse embryogenesis;

differentiation and

maturation of neuronal

precursor cells

STAT1 NM_009283 protects against IFNa-mediated

injury in CNS

CREB NM_009952 maintenance of neural cells

Cluster 5: early progenitors in mHSC maturation

E2A NM_011548 B-cell development beyond

the progenitor cell stage

The stem-cell-related biological processes are specified here.

Table 4. Featured biological processes enriched in each cluster

GO ID Adjusted p-value Biological process

Cluster I: PG/PS/FL/ST

GO:0007059 3.53E�02 Chromosome segregation

GO:0006263 3.19E�05 DNA-dependent DNA replication

GO:0006270 7.30E�05 DNA replication initiation

Cluster III: LT/QS/BM/QG/SH/IH

GO:0030154 1.82E�02 Cell differentiation

GO:0007275 1.82E�02 Development

Cluster IV: IP/SE/SN

GO:0051297 7.08E�04 Centrosome organization and

biogenesis

GO:0006454 4.96E�03 Translational initiation

GO:0000279 1.37E�03 M phase

GO:0051301 2.13E�03 Cell division

GO:0007098 7.08E�04 Centrosome cycle

GO:0008104 9.77E�06 Protein localization

GO:0045184 3.22E�06 Establishment of protein localization

GO:0031023 1.46E�03 Microtubule organizing

center organization

GO:0006997 3.18E�02 Nuclear organization and biogenesis

GO:0007000 1.97E�02 Nucleolus organization and biogenesis

GO:0007100 1.97E�02 Mitotic centrosome separation

GO:0007067 4.17E�03 Mitosis

Cluster V: QG/EP

GO:0045321 3.87E�02 Immune cell activation

GO:0046650 3.71E�02 Lymphocyte differentiation

GO:0046649 2.02E�02 Lymphocyte activation

GO:0042089 1.75E�02 Cytokine biosynthesis

The GO terms were searched for the target genes with the binding sites for the corre-

sponding transcriptional regulators. The overrepresented terms were selected by the

hypergeometric test and multiple testing adjustment using FDR procedure (p < 0.05).
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We could not find any significant terms for Cluster 2 satisfying the

p-value threshold ( p < 0.05).

To validate further the modularity, we examined whether

the targeted gene group has coherent gene expression. Figure 4

shows the ‘bin’ distribution of the correlation coefficients for

Random, Cluster and Target gene sets. In the result, the correlative

associations were stronger between the target genes within an indi-

vidual module than between the non-modularized genes. As shown

in the figure, the correlation curve of the target genes is shifted to

the right compared with the others. This indicates that genes in

a module show higher co-expression behavior.

4 DISCUSSION AND CONCLUSION

Stem cells are regarded as the cutting edge with regard to their

practical application. However, their clinical efficacy still seems

far away according to the current scientific information. Stem

cells have been intensely studied to identify the novel gene func-

tions underlying the cell character. Nevertheless, the accumulated

evidence is insufficient to understand stem cell characteristics. This

is probably because stem cells may have more unique and complex

nature with unusual players or their non-redundant functions. To

resolve multi-factorial characteristics, large-scale gene expression

analyses have been employed, producing a large amount of expres-

sion data. Many experiments to study stem cells have been per-

formed for different purposes, and their results have brought about

different interpretations. However, we believe that the integration of

the individual data can provide another comprehensive view. In the

current study, we tried to find TFs characterizing stem cell

subpopulations, using datasets adopted from more than two indi-

vidual data sources. We could extract refined information, trimming

noise by integrating the original dataset.

Motivated by the presence of the high-quality data, we examined

the relationship between stem cell subpopulations and their corre-

sponding gene regulators. As an appropriate model, an LVM was

applied to co-clustering, which grouped highly correlated subpopu-

lations and TFBSs simultaneously using latent variables. From the

result, the regulatory module was defined, based on the significance

of associations between two objects. The GO analysis showed an

obvious bias between the modules and the biological functions of

target genes. The lack of GO terms representing Cluster 2 suggests

that genes belonging to a few specific functional categories and also

several genetic factors involved in various biological functions may

be responsible for the entire stemness property.

As shown previously, each of the five clusters represents distinct

characteristics, which consist of one proliferation phase, one qui-

escence phase, stemness function and two progenitor stages. They

have connections to several distinct transcriptional regulators, being

partially overlapped among clusters. Though well separated, some

TFBSs belong to more than one cluster. CREB is shared by three

clusters, suggesting its ubiquitous function. GABP, Egr2 and

Pax5 appear to have an influence over two different clusters.

This observation supports their global functions in cell proliferation.

Recently co-clustering methods have been noticed in various

biological issues, since many computational approaches have to

deal with high-throughput biological datasets that are generated

in the form of a two-dimensional matrix. These include microarray

data, bionetworks and sequence motif sets. Previously, several

co-clustering-based studies have successfully identified groups of

genes in microarray datasets that show correlation between their

expression patterns and the biological conditions (Cheng et al.
2000; Kluger et al., 2003; Madeira et al., 2004). Though our

method also shares this aspect, the distinctiveness lies in its hidden

variables. In this paper, the hidden variables flexibly and indirectly

capture the relationship between stem cell species and the gene

regulators. The number of hidden variables (i.e. the number of

clusters) was determined in a heuristic manner by the reiterated

tests. The larger the number of cluster is, the more clusters become

redundant, which may result in lower generalization performance.

Thus, consideration of prior knowledge (i.e. the biological context

of stem cell subpopulations) will help determine an appropriate

number of clusters.

Obviously, the accuracy of the clustering will be improved with

more available source data. Moreover, to disclose the conserved

modules on the regulatory network, it will be a decisive factor in the

comparative analyses to test a greater variety of biological contexts

including stem cells from various species and differentiation status.

Consequently, the comparative study of diverse stem cell species

will contribute to elucidating core mechanisms of stem cell

regulation.
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