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Infection by the human papillomavirus (HPV) is regarded as the major risk factor in the development
of cervical cancer. Detection of high-risk HPV is important for understanding its oncogenic mechanisms
and for developing novel clinical tools for its diagnosis, treatment, and prevention. Several methods are
available to predict the risk types for HPV protein sequences. Nevertheless, no tools can achieve a uni-
versally good performance for all domains, including HPV and nor do they provide confidence levels for
their decisions. Here, we describe ensembled support vector machines (SVMs) to classify HPV risk types,
which assign given proteins into high-, possibly high-, or low-risk type based on their confidence level.
Our approach uses protein secondary structures to obtain the differential contribution of subsequences
for the risk type, and SVM classifiers are combined with a simple but efficient string kernel to handle HPV
protein sequences. In the experiments, we compare our approach with previous methods in accuracy and
F1-score, and present the predictions for unknown HPV types, which provides promising results.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Cervical cancer is one of the leading causes of cancer morbidity
and mortality in women worldwide [1]. Epidemiologic studies have
shown that the association of genital human papillomavirus (HPV)
with cervical cancer is strong, independent of other risk factors, and
that this is consistent in several countries [2].

The HPV is a relatively small, double-strand DNA tumor virus that
belongs to the papovavirus family (papilloma, polyoma, and simian
vacuolating viruses). More than 100 human types are specific for
epithelial cells, including skin, respiratory mucosa, and the genital
tract.

Genital tract HPV types are classified into two or three types by
their relative malignant potential as low-, intermediate-, and high-
risk types [3]. The common, unifying oncogenic feature of the vast
majority of cervical cancers is the presence of HPV, especially high-
risk type HPV [4]. Thus, the detection of high-risk HPVs has become
one of the most essential strategies for cervical cancer treatment.
Since HPV classification is important for medical judgments, there
have beenmany epidemiological and experimental studies to classify
the HPV risk types [2,4,5]. These are mostly based on the polymerase
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chain reaction (PCR), a sensitive technique for the detection of very
small amounts of HPV nucleic acids in clinical specimens.

There have been a few computational studies for HPV risk type
prediction. These are all based on machine learning (ML) techniques,
but use different approaches. For sequence-based methods, DNA or
proteins can be used to discriminate between the risk types. Eom
et al. [6] presented a sequence comparison method using HPV DNA.
They formulate certain informative subsequences into genetic en-
coding of evolutionary algorithms. However, they have not sepa-
rated training and test data clearly. A combined ML technique also
has been proposed to predict HPV risk types from protein sequences
[7,8]. HPV proteins are first aligned, and the subsequences in high-
risk HPVs against low-risk HPVs are selected by hiddenMarkovmod-
els. A support vector machine (SVM) is then used to determine the
risk type from the selected subsequences. The main drawback of
this study is that the method is biased by one specific sequence
pattern. Alternatively, biomedical literature can be used to predict
HPV risk types. A boosting method, Adacost based on na�̈ve Bayes
classifiers, has been proposed in Park et al. [9], whereas text-mining
approaches are limited for the prediction capability because they de-
pend solely on text material to capture the discriminating evidence,
and the obvious keywords such as `high' tend to appear explicitly in
HPV-related materials.

The most important aspect of cervical cancer diagnosis is to de-
termine which HPVs are high risk. The HPV risk types are still man-
ually classified by experts, and there is no deterministic method for
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predicting the risk type of unknown or new HPVs. ML techniques
are useful for discovering hidden patterns from given data, and
also provide robust results for unknown patterns. Therefore, ML-
based approaches can be effective in solving the HPV risk predic-
tion problem. However, in previous ML studies, they only provide
binary decisions without any confidence level for the high-risk
type.

In this paper, we show that by applying an SVM ensemble, HPV
risk type prediction can be improved decisively compared to other
methods. We present an ML approach utilizing protein secondary
structures to discriminate HPV risk types. A neural network-based
method, Jnet [10] first predicts the protein secondary structure, then
ensembled SVMs with string kernels are used to determine the risk
types from the extracted subsequences. The string kernel maps given
input sequences to the space consisting of all subsequences of amino
acid pairs. In particular, the string kernel only uses amino acids
of both ends in k-length subsequences to capture a specific struc-
tural effect, which is motivated by the assumption that amino acid
pairs with certain distances affect the HPV biological function, i.e.,
risk type, in different ways. The risk type is determined by a vot-
ing scheme from the outputs of all SVM classifiers. It gives the con-
fidence level by providing three classes, high-, possible high-, and
low-risk type.

2. Materials and methods

2.1. Data

In this paper, we use the HPV database from the Los Alamos
National Laboratory (LANL), and a total of 72 types of HPV are used for
experiments. The HPV risk types were manually determined based
on the HPV compendium (1997). If an HPV belongs to a skin-related
or cutaneous group, the HPV is classified as a low-risk type. On the
other hand, an HPV is classified as a high-risk type if it is known to
be a high-risk type for cervical cancer. The comments in the LANL
database are used to decide the risk types for some HPVs that are
difficult to classify. Seventeen sequences out of 72 HPVs were clas-
sified as high-risk types (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59,
61, 66, 67, 68, and 72), and others were classified as low-risk types.
Four HPVs (26, 54, 57, and 70) that could not be determined remain
as unknown risk types. Fig. 1 shows an example of the HPV type 16,
which is one of high-risk HPVs.

Fig. 1. The structure of HPV 16 genome. The E6 protein in high-risk HPVs can bind
to and inactivate the tumor suppressor gene products.
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Fig. 2. SVM classification performance for E6, E7, and L1 gene products. Classification
accuracies are measured according to window size, and it shows that E6 proteins
are the most informative to discriminate HPV risk types.

2.2. Gene product selection for HPV risk type classification

High-risk HPV types can be distinguished from other HPV types
based on the structure and function of the E6, E7, and L1 gene prod-
ucts. The late-region gene L1 that encodes a major capsid protein
appears to be the most polymorphic, and sequence polymorphism
exists in the early genes E6 and E7 [11]. These sequence differ-
ences endow individual HPV types with varying degrees of oncogenic
transformation potential, and they can be exploited for developing
type-specific molecular tests.

Here, we empirically evaluate E6, E7, and L1 gene products to
obtain the most informative protein with high classification per-
formance. We have measured the classification accuracy using a
string kernel-based SVM classifier. The SVM classifier is same as the
one used in our ensemble approach. The only difference is that the
k-spectrum kernel is used instead of the gap-spectrum kernel. Hence,
this empirical analysis can be compatible with the ensembled SVMs.
The parameter k in the k-spectrum kernel is the number of consecu-
tive amino acids, i.e., window size. The SVM classifier, the k-spectrum
kernel, and the gap-spectrum kernel are explained in later sections.

Fig. 2 depicts the accuracy changes by the window size. The re-
sults are obtained by leave-one-out cross-validation, which is com-
mon for evaluating small data problems. The figure indicates that the
accuracy using the E6 protein is mostly higher than the one using E7
and L1 proteins. We also find that using E7 protein is a less effective
way to discriminate HPV risk types, based on sequence similarities.
However, the overall accuracy gets high scores by increasing window
size for all proteins because the HPV sequences are relatively short,
and unique patterns are more frequently generated when window
size becomes larger. That is, the learners overfit protein sequences
for larger windows. Viral early proteins E6 and E7 are known for
inducing immortalization and transformation in rodent and human
cell types. E6 proteins produced by the high-risk HPV types can bind
to and inactivate the tumor suppressor protein, thus facilitating tu-
mor progression [12,13]. This process plays an important role in the
development of cervical cancer. For these reasons and the empirical
results, we have chosen E6 proteins corresponding to the 72 HPVs.

2.3. Protein secondary structure prediction

In our approach, we divide HPV sequences according to the sec-
ondary structural elements because it helps to analyze the functional
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roles of proteins. Note that the function of a protein depends on its
structure. Even though the structure is mostly determined by amino
acid sequences, secondary structure is known to facilitate the pre-
diction of protein functions [14,15].

The secondary structure of a protein defines the general three-
dimensional form of local regions and may include regions of �
helices, � sheets, or segments of the chain that assume no stable
shape. Being able to predict accurately secondary structural elements
along the sequence provides a good starting point toward eluci-
dating three-dimensional structure. There have been many predic-
tion methods for protein secondary structure [16–19], and neural
network-based systems generally show good performance.

The tool, Jnet, is a consensus method using neural network en-
sembles [10]. We assume that Jnet can give more precise results, but
in conservative ways because it is based on a consensus of the re-
sults obtained from different aspects. The prediction by Jnet is the
definition of each residue into either � helix, � sheet, or other types
of structure. In Jnet, a network ensemble consists of two artificial
neural networks. The process of assessing the prediction methods
results in different neural network ensembles that are trained with
different alignment data. Each of the networks is combined and an
average is taken for each predicted state.

Our method takes only two types, � helices and other types, to
make input subsequences for ensembled SVMs since the � sheets
predicted by the consensus method are too short to be used.

2.4. SVM ensemble approach

Using the protein subsequences classified by their secondary
structures, PPI risk type classification is performed by an SVM en-
semblemethod. Our ensemble approach is motivated by the intuitive
idea that the risk type prediction might be improved by combining
the outputs of individual classifiers. The theoretical framework of
ensemble averaging is related to bias and variance in statistics [20].
The ensemble machine has the advantages of avoiding low bias and
high variance, i.e., overfitting, and reducing the generalization error
rather than using a single classifier.

For classifying HPV proteins, our approach uses ensembled SVMs,
which is the combination of string kernel-based SVMs. The individ-
ual SVMs are trained on HPV protein subsequences of either � he-
lices or other types, and tested on unknown subsequences. A simple
string kernel the so-called gap-spectrum kernel is introduced to ap-
ply proteins to SVMs directly. The string kernel will only consider
amino acid pairs with a fixed gap k, thus we can obtain different in-
formation according to k. The overall process has the following three
steps (Fig. 3):

(1) Secondary structure prediction by Jnet from HPV protein se-
quences.

(2) SVM learningwith a string kernel parameter k for each structural
element.

(3) HPV risk type prediction through the SVM ensemble.

In this paper, we have taken two structural categories, � helices and
other types as previously described, and set the kernel parameter k
into 2, 3, and 4, respectively, for each structure. Therefore, the SVM
ensemble consists of six SVM classifiers. HPV risk types are finally
determined to high-, possible high-, or low-risk by the voting scheme
based on the outputs from the SVM classifiers.

2.5. Gap-spectrum kernels

Here, we introduce a simple string kernel based on the spec-
trum kernel method [21,22], which has been used to detect remote
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Fig. 3. Overview of the SVM ensemble approach for HPV risk type classification.
Protein sequences are divided into two subsequences, � helices and other types by
Jnet. Then, the subsequences are entered into the SVM classifiers. Each SVM classifier
differently handles the subsequences by the kernel parameter k. k indicates a fixed
distance between amino acid pairs to be considered for classification. The outputs
from the SVM classifiers are gathered, and calculated to produce a HPV risk type.

homology detection. The input space X consists of all finite length
sequences of characters from an alphabetA of size |A|= l (l=20 for
amino acids). Given a number k�1, the k-spectrum of a protein se-
quence is the set of all possible k-length subsequences (k-mers) that
it contains. The feature map is indexed by all possible subsequences
a of length k from A. The k-spectrum feature map �k(x) from X to

Rlk can be defined as

�k(x) = (�a(x))a∈Ak , (1)

where �a(x) is the number of occurrences of a that occur in x. Thus
the k-spectrum kernel function Ks(xi, xj) for two sequences xi and xj
is obtained by taking the inner product in feature space:

Ks
k(xi, xj) = 〈�k(xi),�k(xj)〉. (2)

HPV proteins are relatively short, so that evolutionary variation such
as insertion and deletion cannot be sensitive to the predictions com-
paring long proteins. For instance, E6 gene products from HPVs have
less than 170bp. We assume that an amino acid pair with a certain
distance affects the HPV risk type in a specific way according to its
three-dimensional structural properties, and the HPV risk types can
be identified by considering the amino acid pairs which mostly in-
fluence the risk type decision.

Under the above assumption, we define the gap-spectrum ker-
nel [23] based on the k-spectrum. The gap-spectrum kernel handles
neighbor or distant amino acid pairs by adjusting the parameter k.
For a fixed k-mer a=a1a2 . . . ak, ai ∈ A, 2-length sequence �=a1ak,
� ∈ A2. � indicates the amino acid pair with a (k − 2) gap. The fea-
ture map �k(x) is defined as

�k(x) = (��(x))�∈A2 , (3)
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where ��(x) is the number of occurrences of � that occur in x. Fur-
thermore, for a nonlinear kernel function, the RBF kernel is appended
to increase the discriminative ability between HPV risk types. By clo-
sure properties of kernels [24], the gap-spectrum kernel is defined
as follows:

Kk(xi, xj) = K′(�k(xi),�k(xj)) (4)

= exp(−�‖�k(xi) − �k(xj)‖2), (5)

where � >0. The gap-spectrum kernel may have some problems in
accepting some variants since proteins are handled in the sameman-
ner over whole sequences. However, it is compensated by using the
ensembled SVMs in which various gaps are simultaneously handled.

2.6. SVM classifiers

SVMs have been developed by Vapnik to give robust performance
for classification and regression problems [25]. Kernel functions in-
troduce nonlinear features in the hypothesis space without explicitly
requiring nonlinear algorithms. SVMs learn a linear decision bound-
ary in the feature space mapped by the kernel in order to separate
the data into two classes.

For a feature mapping �, the training data S = {xi, yi}ni=1 are
mapped into the feature space �(S) = {�(xi), yi}ni=1. In the feature

space, SVMs learn the hyperplane f = 〈w,�(x)〉 + b, w ∈ RN , b ∈ R,
and the decision is made by sgn(〈w,�(x)〉 + b). The decision bound-
ary is the hyperplane f = 0 and its margin is 1/‖w‖. SVMs find a
hyperplane that has the maximal margin from each class among
normalized hyperplanes.

Finding the optimal hyperplane for nonseparable data can be
formulated as the following optimization problem:

maximize
n∑

i=1

�i − 1
2

n∑

i=1

n∑

j=1

�i�jyiyj〈�(xi),�(xj)〉 (6)

subject to
n∑

i=1

�iyi = 0, 0��i�C, i = 1, . . . ,n. (7)

By solving this problem, one obtains an optimal solution, Lagrange
multiplier �i, 1� i�n, which needs to determine the parameters,
w and b. For the solution �i, . . . ,�n, the decision function f (x) is ex-
pressed in terms of the following parameters:

f (x) = sgn

⎛
⎝

n∑

i=1

�iyi〈�(x),�(xi)〉 + b

⎞
⎠ . (8)

We can work on a high-dimensional feature space by using kernel
functions, and any kernel function K satisfying Mercer's condition
can be used.

In this paper, we use the gap-spectrum kernel for the kernel
function K. The ensembled SVMswere implemented by using LIBSVM
[26], a freely available software package based on the sequential
minimal optimization (SMO) method.

2.7. HPV risk type decision

After individual SVM classifiers are trained for the assigned se-
quences, a final HPV type is given from the SVM outputs by a vot-
ing scheme, i.e., an SVM ensemble calculates the weighted sum
F = ∑m

i=1 �ifi(x), where �i >0 and fi is the output of an SVM classi-
fier. For 	1, 	2 >0, the HPV risk type is then predicted as follows:

Output =

⎧⎪⎨
⎪⎩

High if F > 	1,

Possible high if 	2 < F�	1,

Low otherwise.

(9)

For experiments, we have simply set the decision weight � to uni-
form values, i.e., �i = 1, and the decision boundaries have been set
to 	1 = 4, 	2 = 2.

3. Results and discussion

3.1. Evaluation measure

In the HPV risk type classification, it is important to detect as
many high-risk HPVs as possible, although a few low-risk HPVs are
misclassified, hence we use both accuracy and F1-score as perfor-
mance evaluation measure.

When binary scales are used for both answer and prediction, a
contingency table is established showing how the dataset is divided
by these two measures (Table1). Using the table, the accuracy and
F1-score are calculated as follows:

accuracy = a + d
a + b + c + d

· 100%,

F1-score = 2 · PPV · specificity
PPV + specificity

· 100%,

where PPV=a/(a+b) and specificity=a/(a+c). PPV is the abbreviation
for positive predictive value.

3.2. HPV classification

Table 2 shows the comparison of the manually tagged answer
and the results from our approach using the SVM ensemble. Leave-
one-out cross-validation was applied to determine the prediction
performance for all experimental results. We classify HPV types into
three classes, high-, possible high-, and low-risk as presented in
Eq. (9). In other words, this gives three confidence levels for the high-
risk type. For instance, `possible high' means that a HPV is predicted
as a high-risk type, but with low confidence.

The prediction performance in accuracy and F1-score is given in
Table 3. The performance results using mismatch kernels have been
reported in Joung et al. [7]. The linear kernel method is the same as
the SVM classifier with k= 1 in the gap-spectrum kernel. The BLAST
predictions are obtained from taking the majority class between
the most similar five HPVs, a slight modification of the k-nearest
neighbor method. The ensembled SVMs reach 94.12% accuracy and
88.89% F1-score, while the mismatch kernel shows 92.70% accuracy
and 85.70% F1-score. The linear kernel shows 90.28% accuracy and
83.72% F1-score. For BLAST, 91.18% accuracy and 88.24% F1-score are
given. They all show good performance, but the ensembled SVMs
get better results than other sequence-based methods, on average
a 3.5% improvement in the dataset. In particular, BLAST, mismatch
kernels, and linear kernels can produce incorrect results with noisy
data, whereas the ensembled SVMs can be more consistent because
it combines the results of individual classifiers.

The AdaCost [27] and na�̈ve Bayes [28] in Table 3 are the perfor-
mance results using biomedical literature, which are reported in Park
et al. [9]. Even though text-based classification has an advantage in
having explicit keywords in the documents, this does not provide
superior results compared with sequence-based methods. In partic-
ular, text-mining approaches only depend on the evidence obtained

Table 1
The contingency table to evaluate the classification performance.

HPV risk type

High Low

Prediction High a b
Result Low c d
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Table 2
Comparison of the manually classified risk types (Man) and the prediction results using the proposed approach (Out).

Type Man Out Type Man Out Type Man Out

HPV1 Low Low HPV25 Low Low HPV50 Low Low
HPV2 Low Low HPV27 Low Low HPV51 High High
HPV3 Low Low HPV28 Low Low HPV52 High High
HPV4 Low Low HPV29 Low Low HPV53 Low PH
HPV5 Low Low HPV30 Low High HPV55 Low Low
HPV6 Low Low HPV31 High High HPV56 High PH
HPV7 Low Low HPV32 Low Low HPV58 High High
HPV8 Low Low HPV33 High High HPV59 High High
HPV9 Low Low HPV34 Low Low HPV60 Low Low
HPV10 Low Low HPV35 High High HPV61 High PH
HPV11 Low Low HPV36 Low Low HPV63 Low Low
HPV12 Low Low HPV37 Low Low HPV65 Low Low
HPV13 Low Low HPV38 Low Low HPV66 High Low
HPV15 Low Low HPV39 High High HPV67 High High
HPV16 High High HPV40 Low Low HPV68 High High
HPV17 Low Low HPV41 Low Low HPV72 High PH
HPV18 High High HPV42 Low Low HPV73 Low PH
HPV19 Low Low HPV43 Low Low HPV74 Low Low
HPV20 Low Low HPV44 Low Low HPV75 Low Low
HPV21 Low Low HPV45 High High HPV76 Low Low
HPV22 Low Low HPV47 Low Low HPV77 Low Low
HPV23 Low Low HPV48 Low Low HPV80 Low Low
HPV24 Low Low HPV49 Low Low

`PH' means `possible high'.

Table 3
The performance comparison of the proposed approach and other approaches based on manually tagged answers in Table 2.

Method Protein sequence-based classification Text-based classification

Ensemble Mismatch Linear BLAST AdaCost Na�̈ve Bayes

Accuracy 94.12 92.70 90.28 91.18 93.05 81.94
F1-score 88.89 85.70 83.72 88.24 86.49 63.64

`Ensemble', `Mismatch', and `Linear' mean ensembled SVMs, mismatch kernels, and linear kernels, respectively.

Table 4
Comparison of the manually classified risk types (Manual) and the result from
Muñoz et al. (Muñoz) for the HPVs predicted as `possible high' in our approach.

Type Manual Muñoz

HPV53 Low Possible high
HPV56 High High
HPV61 High Low
HPV72 High Low
HPV73 Low High

from the literature. If the documents are unavailable for unknown
HPVs, it is not possible to classify them.

While manually tagged answers are only based on the
literature in the LANL database, we can refer to recent research for
additional information on HPV risk types. Muñoz et al. [5] suggest
a reliable risk type classification based on epidemiologic studies of
over 1900 patients. In most cases, the HPV risk types follow the same
decision between both manually tagged answers and the results in
Muñoz et al. However, there exist a few differences in HPV risk types.
Table 4 shows the comparison of the manually tagged answers from
the LANL database and the decisions from Muñoz et al. for the HPVs
predicted as `possible high' by our method. Four HPV types (53, 61,
72, and 73) except HPV56 are predicted with opposing risk by these
two sources. This means that the four HPVs have low confidence for
the high-risk type, and the SVM ensemble exactly predicts the risk
types as `possible high'.

Fig. 4 depicts the performance comparison of the SVM ensemble
and the mismatch kernel on manually tagged answers and modi-
fied answers. The modified answers are the corrected version of the

manually tagged answers in Table 2, by adding new high-risk types
(Table 4) reported in Muñoz et al. [5]. The figure shows that our
approach using protein secondary structure and amino acid pair ex-
traction outperforms the previous SVM method, which does not uti-
lize the protein structural information. As a result, we can conclude
that it is critical to use protein structures to get more accurate HPV
risk type prediction.

It would be interesting to analyze the outputs from the SVM
classifiers so that we can infer which factor has a certain function that
predicts the high-risk type. Table 5 presents all SVM predictions for
the HPVs classified as high-risk types. According to the table, only �
helices have the important function in determining correct decisions
even though � helices and other types are all used to produce final
decisions in the experiments. In particular, the risk types can be
obtained with good performance using SVM classifiers with k = 2
and 4 in the regions of � helices. k=2 means two consecutive amino
acids and k=4 means an amino acid pair with two gaps. Because an
� helix is spiral shaped, there is more chance of interaction between
amino acids with the same interval. In addition, HPV E6 proteins are
relatively short, so that any variations such as evolutionary or amino
acid order changes do not create serious pitfalls in the proposed
approach. Here, the i th amino acids may interact with (i + 3)th
amino acids in the � helices of E6 proteins, which significantly affects
the decision of the high-risk type. In conclusion, it might that the
regions of � helices in E6 are important in predicting whether HPVs
are high risk or not regardless of the imperfect secondary structure
prediction.

E6 protein produced by the high-risk HPV types binds to host
p53 causing inactivation of its function through a mechanism of
ubiquitin-dependent degradation. However, the structure of E6
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Fig. 4. The performance comparison of the proposed method and the previous SVM approach from Joung et al. on manually tagged answers (Manual) and modified answers
(Modified). For the modified answers, some HPV risk types were corrected according to the results of Muñoz et al. as shown in Table 4.

Table 5
SVM predictions for the HPVs manually classified as high-risk types.

Type k = 2 k = 3 k = 4 Output

� helix Others � helix Others � helix Others

HPV16 High High High High High High High
HPV18 High High High High High High High
HPV31 High High High High High High High
HPV33 High High High High High High High
HPV35 High High High High High High High
HPV39 High High High High High High High
HPV45 High High High High High High High
HPV51 High High Low High High High High
HPV52 High High High High High High High
HPV56 High High Low High Low High Possible high
HPV58 High High High High High High High
HPV59 High High Low High High High High
HPV61 High Low Low High Low High Possible high
HPV66 High Low Low Low Low Low Low
HPV67 High High High High High High High
HPV68 High High High High High High High
HPV72 High High Low Low Low High Possible high

protein has not been fully solved and only a predicted model can
be applied [29]. HPV E6 proteins do not act as high-risk types in-
dependently, rather associated with p53 tumor suppressor and the
ubiquitin ligase E6-AP, then � helices might form part of the bind-
ing regions, i.e., zinc-finger proteins according to the experimental
results. There have been previous reports that the � helix in certain
domains is related to viral infection and oncogenic transformation
[30–32]. It is also known that many HPV16 E6 binding proteins,
including E6-AP, paxillin, E6-BP, and IRF-3, contain a conserved
�-helical domain and presumably interact with similar E6 sequences
[12,33]. The HPV16 is the most prevalent high-risk HPV type and
we realize that the �-helical feature can also be common for other
high-risk HPVs.

3.3. Prediction for unknown HPV types

One of the most important issues in this task is to predict un-
known, but potentially high-risk HPV types. We have evaluated the
HPVs marked as unknown from the LANL database, and the results
are presented in Table 6. HPV26, HPV54, HPV57, and HPV70 are pre-
dicted as high-, low-, low-, and high-risk types, respectively. The
prediction results for HPV26 and HPV54 are identical to the one in
Muñoz et al. [5]. However, there have been different predictive deci-
sions for HPV70 according to previous reports [5,34,35], and the risk
type of HPV57 cannot be predicted with accuracy because of insuf-
ficient published work. This shows that the SVM ensemble method
can provide a guideline for the investigation of potentially high-risk
HPVs.

Table 6
Predicted risk type for the HPVs, whose types are unknown.

Type Risk

HPV26 High
HPV54 Low
HPV57 Low
HPV70 High

4. Summary

We have proposed an ML approach to classify HPV risk types
that are closely related to cervical caner. The proposed method uses
the secondary structure information using Jnet, and for each struc-
tural element, gapped amino acid pairs are considered to reflect the
interactions between amino acids by the gap-spectrum kernel. The
ensembled SVMs give confidence levels for the high-risk type, follow-
ing performance improvement. Even though the ensemble method
is computationally expensive, it provides intuitive explanations of
how results are obtained.

By performing leave-one-out cross-validation, the experimental
results show that the SVM ensemble utilizing E6 protein structures
improves the HPV classification performance more than other meth-
ods. In particular, we have discovered that � helical regions can have
an important role in oncogenic transformation in high-risk HPVs. We
also simulated predictions for unknown HPV types, which provide
promising results. Even though E6 structure is not fully elucidated,
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our approach would provide prior knowledge for drug design for
cervical cancer prophylaxis.
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