
Genetic Programming and Evolvable Machines, 1, 217]242, 2000
Q 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Bayesian Methods for Efficient Genetic
Programming
BYOUNG-TAK ZHANG http:rrscai.snu.ac.krr; btzhang

()Artificial Intelligence Lab SCAI , School of Computer Science and Engineering, Seoul National Unï ersity,
Seoul 151-742, Korea

Receï ed June 1, 1999; Re¨ised October 6, 1999

Ž .Abstract. A Bayesian framework for genetic programming GP is presented. This is motivated by the
observation that genetic programming iteratively searches populations of fitter programs and thus the
information gained in the previous generation can be used in the next generation. The Bayesian GP
makes use of Bayes theorem to estimate the posterior distribution of programs from their prior
distribution and likelihood for the fitness data observed. Offspring programs are then generated by
sampling from the posterior distribution by genetic variation operators. We present two GP algorithms
derived from the Bayesian GP framework. One is the genetic programming with the adaptive Occam’s

Ž .razor AOR designed to evolve parsimonious programs. The other is the genetic programming with
Ž .incremental data inheritance IDI designed to accelerate evolution by active selection of fitness cases.

A multiagent learning task is used to demonstrate the effectiveness of the presented methods. In a
series of experiments, AOR reduced solution complexity by 20% and IDI doubled evolution speed, both
without loss of solution accuracy.

Keywords: Bayesian genetic programming, probabilistic evolution, adaptive Occam’s razor, incremen-
tal data inheritance, parsimony pressure, data subset selection

1. Introduction

Ž .Genetic programming GP is a method for learning the most fit computer
programs by means of artificial evolution. The genetic programs are usually

w xrepresented as trees consisting of functions and terminal symbols 20 . A popula-
tion of computer programs are generated at random. They are evolved to better
programs using genetic operators. The ability of the program to solve the problem
is measured as its fitness value. Since Lisp S-expressions can be represented as
trees, genetic programming can, in principle, evolve any Lisp programs. Due to this
representational power, GP provides a general and powerful tool for automatic

w xprogramming and machine learning 8 . However, the general applicability of GP
suffers from large amounts of space and time required for generating intermediate
solutions.

Space requirements of GP are proportional to the product of population size and
the size of each program. Thus, given a fixed population size, space requirements
can be reduced by minimizing the program size at each generation. Time require-
ments of GP are proportional to the product of the population size, individual
program size, data size, and the number of generations. Given a fixed population

ZHANG218

size and generation number, the time complexity of GP can be reduced by
minimizing program size andror data size. As reviewed in Section 2, several
methods have so far been proposed and tested to scale up genetic programming
with respect to space and time requirements. However, relatively little effort has
been made to develop theories to provide principled methods for efficient guidance
of evolutionary dynamics of genetic programming.

In this paper, we present principled ways for genetic programming to evolve
compact programs as fast as possible without loss of their accuracy. These methods

w xare based on the Bayesian evolutionary framework 41 . In the Bayesian approach
to genetic programming, genetic programs are viewed as models of the fitness data.
Bayes theorem is used to estimate the posterior probabilities of programs from
their prior probabilities and likelihoods for the fitness cases observed. Offspring
programs are then generated by sampling from the posterior distribution by using
genetic operators.

Two specific methods for Bayesian genetic programming are presented. One is
Ž .the genetic programming with the adaptive Occam’s razor AOR designed to

evolve parsimonious programs. The other is the genetic programming with incre-
Ž .mental data inheritance IDI designed to accelerate evolution by active selection

of training cases. All these methods are implemented as adaptive fitness functions
that take into account the dynamics of evolutionary processes. A multiagent
learning task is used to demonstrate the effectiveness of the presented methods.

The paper is organized as follows. In Section 2, we briefly review related works
and describe the task that will be used in empirical studies. Section 3 introduces
the Bayesian approach to genetic programming and its variants. Sections 4 and 5
provide the Bayesian GP methods for program growth control and acceleration of
evolution speed. The performances of the presented methods are also demon-
strated. Section 6 discusses the directions for future research.

2. Upscaling genetic programming

Before the Bayesian approach is described, we review previous efforts for scaling
up genetic programming. The review is focused on five issues that are most related

Ž .to the present work see Table 1 : analysis of code growth phenomena, enforcing
parsimony pressure, promoting modularity, operator design, and fitness case selec-
tion. It should be mentioned that genetic programming is a very broad and rapidly
evolving field of research and our review does not attempt to be complete.

2.1. Pre¨ious efforts

Genetic programming is distinguished from other evolutionary algorithms in that it
uses variable-size representations. Many GP researchers have observed that GP
programs tend to rapidly grow in size as the population evolves. This phenomenon

w xis known as ‘‘bloat.’’ Angeline 3 , for example, observes that many of the evolved
solutions contained code segments that, when removed, did not alter the result

BAYESIAN GENETIC PROGRAMMING 219

Table 1. A summary of previous efforts for upscaling genetic programming

Subjects Selected references

w x w xAngeline 3 Banzhaf 7
w x w xBloat Landgon 22 Nordin 27

w x w xWu 39 Zhang 44
w x w xBlickle 10 Iba 18

w x w xParsimony Kinnear 19 Rosca 31
w x w xSoule 36 Zhang 44, 45
w x w xAndre 1 Angeline 2

w x w xModularity Koza 21 O’Reilly 28
w x w xSpector 37 Rosca 32

w x w xAngeline 4 Banzhaf 7
w x w xOperators Chellapilla 11 Koza 20

w x w xLuke 24 Poli 29
w x w xGathercole 13, 14 Hillis 17
w x w xSubset Schoenauer 33 Siegel 34

w x w xTeller 38 Zhang 40, 42

This list contains references which are directly related to the present work,
and thus it is far from complete.

w xproduced by the solution. Soule et al. 35 observe that removing non-functional
codes at every generation does not halt the program’s growth. Instead, the
programs generate code which, while functional, is never actually executed.

Similar observations have been made in ‘‘biological’’ evolution. That is, introns
w xor non-coding segments emerge in DNA as well. Wu and Lindsay 39 give a recent

w xreview of biological introns. Banzhaf et al. 7 characterize introns as having two
salient features: An intron is a segment of the genotype that emerges from the
process of the evolution of variable length structures, and an intron does not affect
the survivability of the individual directly. Introns in GP turned out to be a mixed
blessing. On one hand, they may benefit evolution since they enable a genetic
program to protect itself against the destructive effect of crossover, and allow the

w xpopulation to preserve highly-fit building blocks 27 . On the other hand, from the
practical point of view, introns usually result in run stagnation, poor results, and a

w xheavy drain on memory and CPU time 8, 35 .
An explanation for the cause of bloat in GP was provided by Zhang and

w xMuhlenbein 44 . Based on statistical learning theory, they show that the total error¨
of genetic programs can be decomposed into two terms attributed to bias and
variance. Since complex models are more expressive and thus better at reducing
the bias error than simple models, GP programs tend to grow until they fit the
fitness data perfectly unless complex models are penalized to reduce the variance
error. Empirical evidence supporting the explanation was given by an analysis of
the distributions of fitness vs. complexity of genetic programs generated by a large
number of GP runs for solving 7-parity problems.

w xRecently, Langdon and Poli 22 provide a similar but more general explanation
for bloat. They argue that any stochastic search techniques, including GP, will tend
to find the most common programs in the search space of the current best fitness.

ZHANG220

Since in general there are more of these which are long than there are which are
Ž .short but GP starts with the shorter ones the population tends to be filled with

w xlonger and longer programs. Based on this argument, Langdon 23 presents new
crossover operators that carefully control variation in size and produce much less
bloat.

For the purposes of upscaling genetic programming, there are several reasons for
generally preferring parsimonious programs to complex ones. Parsimonious pro-
grams typically require less time and less space to run. This is particularly
important during the GP process which may need to store and evaluate popula-
tions of hundreds or thousands of programs. When hardware implementation of

ŽGP solutions is in mind, or when GP evolves hardware circuits online ‘‘evolvable
.hardware’’ , simple circuits require less hardware resource and execution time than

complex circuits.
In addition, statistical theory says that simpler models are likely to generalize

w xbetter on unseen fitness cases. As shown in 44 , when biases are equal, a simple
program has less variance in average than a complex program, resulting in smaller
total error. This is the statistical background behind the principle of Occam’s

w xRazor 43 and the necessity for parsimony pressure in genetic programming.
However, an effective control of program growth is a difficult task, since too much

Ž .pressure on parsimony that reduces variance error may lead to loss of diversity
Ž .and thus result in low accuracy greater bias error . The adaptive Occam method

w x44 was presented as a method for striking a balance between accuracy and
parsimony of GP solutions. It adapts the complexity penalty in the fitness function
during a run so that programs of minimal complexity are evolved without loss of
their accuracy. Several researchers support that parsimony pressure is one of the

w xeasiest and effective methods for avoiding bloat 10, 18, 19, 31, 35, 36 .
Controlling program growth is one method for reducing time complexity as well

as space complexity of genetic programming. Another approach to upscaling GP is
w xby increasing modularity and reusability of programs. Koza 21 introduces the

automatically defined functions or ADFs. An ADF is a subroutine that is evolved
during a run of genetic programming and which may be called by the main
program that is being simultaneously evolved during the same run. He reports that
GP with ADFs produced more parsimonious solutions and required fewer fitness

w xevaluation. Angeline and Pollack 2 develop an alternative method called module
Ž . w xacquisition MA . Rosca and Ballard 32 present mechanisms for adaptive repre-

Ž .sentation learning ARL that creates new subroutines through discovery and
w xgeneralization of blocks of code. Spector 37 presents a method for evolving a
Ž .collection of automatically defined macros ADMs . He shows that ADMs some-

times provide a greater benefit than ADFs.
The search process of GP can be made more efficient by designing novel genetic

operators. Traditionally, crossover has been considered as the primary operator
and mutation as the secondary. This view is consistent with the notion that GP is
best made by combining building blocks, as hypothesized in bitstring genetic

w xalgorithms. Koza 20 has argued that mutations have little utility in GP because of
the position-independence of GP subtrees. However, the roles of building blocks
and of crossover have become increasingly controversial in recent years. Luke and

BAYESIAN GENETIC PROGRAMMING 221

w xSpector 24 experimentally demonstrate that mutation can in fact have utility and
that crossover does not consistently have a considerable advantage over mutation.

w xBanzhaf et al. 6 also found that increasing the mutation rate can significantly
w ximprove the generalization performance of genetic programming. Angeline 4

shows that mutation operations can perform on par with subtree crossover and
suggests that the building block hypothesis may not accurately describe the

w xoperational chracteristics of subtree crossover. Chellapilla 11 proposes a method
w xfor evolving computer programs without crossover. Poli and Langdon 29 propose

w xvarious crossover operators and compare their search properties. Haynes 16
demonstrates how small changes in representation, decoding, and evaluation of
genetic programs can increase the probability of destructive crossover and muta-
tion while not changing the search space.

More recently, several authors have shown that fitness evaluation in genetic
programming can be significantly accelerated by selecting a subset of fitness cases.
The basic idea is that, other things being equal, the evolution time can be

w xminimized by reducing the effective data size for each generation. Siegel 34 , for
example, describes a GP method for evolving decision trees using subsets of given
training cases. Each fitness case has a fitness measure and the training cases which
tend to be incorrectly classified by decision trees become more fit, and therefore
selected more frequently. This method is motivated by competitive selection of

w xfitness cases in the host-parasite model of Hillis 17 . Similar ideas of competitive
w xselection of fitness cases have been refined by Teller and Andre 38 and by

w xGathercole and Ross 14 . Here, the fitness of a training case is evaluated only
when the cost of evaluating another fitness case is outweighed by the expected
utility that the new information will provide.

Another class of methods for fitness case selection is based on incremental
w xlearning. Schoenauer et al. 33 propose the successive optimization scheme that

gradually refines the fitness. Evolution typically starts by considering a unique
fitness case, and additional fitness cases are ‘‘gradually’’ taken into account when
the current population meets some performance criterion. Though in a slightly

w x Ž .different context, Zhang 40 presents a selective incremental learning SEL
method in which an ‘‘incrementally’’ chosen subset of given training data is used
for fitness evaluation of the model. The data sets are divided into two disjoint sets
of candidate and training sets. Each candidate data point has a fitness value, called
criticality, defined as the error made by the model. Fitter candidates are then
incrementally selected into the training set as learning proceeds. SEL evolves a
single data set for a single model. The method presented in Section 5 generalizes
this to populations of multiple models and multiple data sets.

2.2. E¨ol̈ ing multiagent cooperation strategies using GP

A multiagent learning task is used as a testbed for the Bayesian genetic program-
ming methods. In an n = n grid world, a single table and four robotic agents are
placed at random positions, as shown in Figure 1. A specific location is designated
as the destination. The goal of the robots is to transport the table to the

ZHANG222

Figure 1. The environment for multiagent learning. On a grid world of 32 = 32, there are four robots,
64 obstacles, and a table. The task of the robots is to transport the table in group motion to the
designated target position G.

destination in group motion. The robots need to move in herd since the table is too
heavy and large to be transported by single robots. The robots share a common
control program A .best

The objective of a GP run is to find a multi-robot algorithm A that, whenbest
executed by the robots in parallel, causes efficient table transport behavior in
group. To evolve the programs, the robots activate each candidate program A fori
i s 1, . . . , M in parallel to run a team trial. At the beginning of the trial, the robot
locations are chosen at random in the arena. They have different positions and
orientations. During a trial, each robot is granted a total of S elementarymax
movements. The robot is allowed to stop in less than S steps if it reaches themax
goal. At the end of the trial, each robot i gets a fitness value which was measured
by summing the contributions from various factors.

The terminal and function symbols used for building GP trees to solve this
problem are listed in Tables 2 and 3. The terminal set consists of six primitive
actions: FORWARD,AVOID, RANDOM-MOVE, TURN-TABLE, TURN-GOAL, and STOP.
The function set consists of six primitives: IF- OBSTACLE,IF- ROBOT, IF- TABLE,
IF- GOAL, PROG2, and PROG3. Each fitness case represents a world of 32 by 32
grid on which there are four robots, 64 obstacles, and the table to be transported
Ž .see Figure 1 for an example of fitness cases . A set of 200 training cases that are
generated at random is used for evolving the programs. An independent set of 200
random cases is used to test the performance of the evolved programs.

All the robots use the same control program. To evaluate the fitness of robots,
we made a complete run of the program for one robot before the fitness of another

Ž .is measured. The raw fitness value, e g , of individual i at generation g againsti, c
case c is computed by considering various factors. These include the distance
between the target and the robot, the number of steps moved by the robot, the
number of collisions made by the robot, the distance between starting and final
position of the robot, and the penalty for moving away from other robots.

BAYESIAN GENETIC PROGRAMMING 223

Table 2. GP terminal symbols for the multiagent task

Symbol Description

FORWARD Move one step forward in the current
direction

AVOID Check clockwise and make one step in
the first direction that avoids collision

RANDOM-MOVE Move one step in the random
direction

TURN-TABLE Make a clockwise turn to the nearest
direction of the table

TURN-GOAL Make a clockwise turn to the nearest
direction of the goal

STOP Stay at the same position

Table 3. GP function symbols for the multiagent task

Symbol Description

IF- OBSTACLE Check collision with obstacles
IF- ROBOT Check collision with other robots
IF- TABLE Check if the table is nearby
IF- GOAL Check if the table is nearby

Ž .PROG2, PROG3 Evalute two or three subtrees in
sequence

3. Bayesian genetic programming

In this section we present a theory of genetic programing that is based on Bayesian
inference. The general theory is then applied to addressing two important issues in
genetic programming, i.e., control of program growth and acceleration of fitness
evaluation. This section aims to provide an outline of the Bayesian GP approach

Figure 2. An example genetic program for the multiagent learning task. Non-terminal nodes denote
checking sensor inputs of the robots, and terminals indicate actions to be taken. The meaning of the
symbols is described in Tables 2 and 3.

ZHANG224

and some distinguishing features in different implementations. The algorithms are
detailed in the following two sections.

3.1. Bayesian formulation of genetic programming

Genetic programming works by initializing a population of programs and iteratively
Ž . � g4M gproducing the next generation of fitter programs, i.e. AA g s A , where Ai is1 i

denotes the ith program at generation g, and M is the population size. Genetic
operators such as mutation and crossover are used to produce offspring programs
from the parent programs. New generations are produced repeatedly until the
maximum number of generations g is reached or some other terminationmax
condition is satisfied. The goodness or fitness of a program is measured in terms of
a set D of fitness cases or training data and the programs can be considered as a
model of the unknown process f generating the data.

In the Bayesian GP, the best program is defined as the most probable model,
given the data D plus the prior knowledge on the problem domain. Bayes theorem

w xprovides a direct method for calculating such probabilities 15 . It states that the
Ž .posterior i.e. after observing the data D probability of a program A is

P D N A P AŽ . Ž .
P A N D sŽ .

P DŽ .

P D N A P AŽ . Ž .
s , 1Ž .

P D N A P A dAŽ . Ž .H
AA

Žwhere AA is the space of all possible programs in case of A taking discrete values,
. Ž . Žthe integral will be replaced by summation . Here P A is the prior i.e. before

. Ž .observing the data probability distribution for the programs, and P D N A is the
likelihood of the program for the data.

The relationship between the states of models and their probabilities is estab-
w xlished by borrowing the concept of ‘‘energy’’ from statistical physics 26 . We regard

the GP system as a thermodynamic system. Every possible state s of the system has
Ž .some definite energy E s . The system energy can fluctuate and it is assumed that
Ž .the probability of a thermodynamic system being in state s, given that the

temperature is T is given as

1
P s s exp yE s rT , 2Ž . Ž . Ž .Ž .

Z

Ž .where E s is the energy of the system and Z is the normalization constant needed
Ž .to make the distribution integrate or sum to one. This distribution is known as

Ž .the canonical or Boltzmann distribution.

BAYESIAN GENETIC PROGRAMMING 225

Under the canonical distribution, the prior distribution of programs A can be
expressed as

1
P A s exp yaF , 3Ž . Ž . Ž .AZ aŽ .A

Ž .where Z a is a normalizing constant, a s 1rT , and F is the ‘‘energy’’ of modelA A
A in the ‘‘equilibrium’’ state. For example, the energy function, F , can be chosenA
as the total number of nodes in genetic program A. This choice of prior distribu-
tion says that we expect the program size to be small rather than large, thus
implementing a parsimony pressure. Similarly, the likelihood of models A for the
fitness data D can be expressed as

1
P D N A s exp ybF , 4Ž . Ž . Ž .DZ bŽ .D

where F is an error function for the fitness set D, b controls the variance of theD
Ž .noise, and Z b is a normalization factor. The likelihood factor gives preferenceD

Ž .to programs that fit better to have less error for the fitness cases.
Ž .Initially, the shape of the prior probability distribution of programs P A is flati

to reflect the fact that little is known in advance. Evolution is considered as an
Ž .iterative process of revising the posterior distribution of models P A N D by

Ž . Ž .combining the prior P A with the likelihood P D N A . In each generation, Bayes
Ž .theorem 1 is used to estimate the posterior fitness of individuals from their prior

Ž .fitness values. The posterior distribution P A N D is then used to generate its
offspring.

Ž .The objective of Bayesian genetic programming Figure 3 is to find a program
Ag that maximizes the posterior probability:b est

Ag s min arg max P Ag N D 5Ž .Ž .b est g iggFg Ž .A gAA gmax i

Figure 3. Outline of the Bayesian genetic programming procedure.

ZHANG226

Ž .where g is the maximum number of generations and AA g is the populations ofmax
size M:

MgAA g s A . 6� 4Ž . Ž .i is1

Ž g . gThe posterior probability P A N D of program A is computed with respect tog i i
the g th population:

P D N Ag P AgŽ . Ž .i igP A N D s , 7Ž .Ž .g i M g gÝ P D N A P AŽ . Ž .js1 j j

Ž g . Ž g . Žwhere P D N A is the likelihood and P A is the prior probability of or degreei i
. gof belief in A . Note that the posterior probability is approximated by a fixed-sizei

Ž .population AA g which is typically a small subset of the entire program space AA.
Genetic operators are applied to generate L offspring AX , k s 1, . . . , L. For-k

mally, this proceeds in two steps. First, candidates are generated by sampling from
the proposal distribution:

Q AX N Ag . 8Ž .Ž .g k i

Ž .The specific form of Q ?N ? is determined by variation operators. For example,g
for subtree crossover from two parents it is given as:

Q AX N A s P A N A P AX N A , A . 9Ž . Ž .Ž . Ž .ÝC k i S j i R k i j
Ž .A gAA gj

Ž . Ž .Here P A N A is the probability of individual A in AA g being selected as aS j i j
Ž X . Xmate for A and P A N A , A is the probability of A and A producing A byi C k i j i j i

crossover.
Then, each candidate generated by genetic operators is accepted with probability

P AX N DŽ .g kX ga A N A s min 1, , 10Ž .Ž .g k i g½ 5P A N DŽ .g i

Ž g . Ž . Ž X .where P A N D is computed by 7 and P A N D is the posterior probability ofg i g k
AX estimated with respect to the current population:k

P D N AX P AXŽ . Ž .k kXP A N D s . 11Ž . Ž .g k M g gÝ P D N A P AŽ . Ž .js1 j j

X Ž . g X gIf A is rejected in 10 , then A is retained, i.e., A ¤ A . Note that thisk i k i
acceptance function does not exclude the case that AX is generated by crossoverk

g g Ž .from A and another parent A g AA g , j / i.i j

BAYESIAN GENETIC PROGRAMMING 227

After L offspring AX , k s 1, . . . , L, are generated, M of them are selected tok
build the new population:

Mgq1AA g q 1 s A . 12Ž . Ž .� 4i is1

Ž g .This defines the posterior distribution P A N D at the next generation. Itgq1 i
should be mentioned that this formulation of offspring selection is intentionally
very general so that it can accommodate various forms of existing selection

Ž . w xschemes, such as m, l selection 5, 25 .
In effect, the evolutionary inference step from generation g to g q 1 is consid-

Ž g . Ž g .ered to induce a new fitness distribution P A N D from priors P A throughgq1 i i
Ž g .posterior distribution P A N D following Bayes formula, using genetic operators.g i

Based on this theoretical framework we present in the following subsections two
examples of Bayesian genetic programming that employ specific techniques for
effective control of evolutionary dynamics. Detailed procedures and experimental
results are described in Sections 4 and 5.

3.2. GP with the adaptï e Occam’s razor

The first Bayesian GP focuses on the fact that genetic programming iteratively
Žsearches populations of more probable more likely in terms of the data and the

.priors programs and thus the information gained in the previous generation can
Ž .be used in the next generation to revise the prior before seeing the data belief in

true programs. Thus, the posterior distribution can be written in the form

P D N Ag P AgŽ . Ž .i gy1 igP A N D s , 13Ž .Ž .g i M g gÝ P D N A P AŽ . Ž .js1 j gy1 j

Ž g .where the priors P A are now expressed explicitly as a function of generationgy1 j
Ž g . Ž .rather than the fixed prior P A as in 7 . After computing the posteriori

g Ž . Ž .probabilities for A , the priors P A are revised to P A by a belief updatei gy1 g
Ž .function u ?, ? :

P A s u P A , P Ag N D . 14Ž . Ž . Ž .Ž .Ž .g gy1 g i

Ž .An implementation of u ?, ? will be described in the next section.
Basically, the Bayesian GP starts with generating programs according to an

Ž .initial prior distribution P A on the program sizes. Typically, the prior distribu-0
tion is given as uniform, reflecting the fact that little is known in advance about the

Ž .optimal size of genetic programs. Then, the fitness F g of the programs isi
measured on the training cases, which results in the estimation of the likelihood
Ž g . Ž .P D N A of programs more details in Section 4 . Combining the prior and thei

Ž g .likelihood by Bayes formula, we get the posterior probabilities P A N D . Theg i

ZHANG228

current prior is then updated to reflect the new information gained from the
posterior distribution.

Ž .Note that we assign prior distributions on the complexity of models programs .
w xIn addition, information theory 12 says that the probability and code length

Ž . Ž . Ž .complexity of models are related as L A s ylog P A . By making use of this,
the complexity of programs can be controlled to evolve parsimonious and accurate
programs. In fact, we show in Section 4 that the adaptive Occam method presented

w xin 44 is derived from the Bayesian genetic programming framework.

3.3. GP with incremental data inheritance

In the second example of the Bayesian approach to GP, we make use of the fact
that the Bayes formula suggests an incremental, evolutionary learning rule: infer
programs of higher posterior probability from the existing programs by observing
new fitness cases. This leads to writing the posterior distribution as

P D g N Ag P Ag N D gy1Ž . Ž .i i gy1 i ig gP A N D s , 15Ž .Ž .g i i M g g g gy1Ý P D N A P A N DŽ . Ž .js1 j j gy1 j j

where the data set D g is now a variable of generation number g and specific to ai
g g Ž .single program A . The collection of D constitutes the data population DD g .i i

The observation of new data will lead to update of the prior distribution:

P A N D g s u P A N D gy1 , P Ag N D g . 16Ž .Ž . Ž .Ž .Ž .g i gy1 i g i i

Ž .The revision of prior distribution is the same as the process for equation 14 ,
gy1 Žexcept that the data D for the estimation of likelihood and thus the posteriori
.probabilities of programs is now a function of generation rather than fixed as D.

Ž .The genetic programming with the incremental data inheritance IDI method
w x g42 is an example of this approach, where D specifically satisfies the followingi
conditions:

g < gy1 < < g <D ; D , D - D , 17Ž .i i i

where D is the entire data set given for training. In this method, the fitness of
programs is estimated on incrementally chosen data subsets D g, rather than on thei
whole data set D, and thus the evolution is accelerated by reducing the effective
number of fitness evaluations. More details are described in Section 5.

4. Bayesian GP for parsimonious solutions

Statistical theories suggest that models which are too simple lack sufficient learn-
ing capability while models which are too complex may generalize poorly on unseen

BAYESIAN GENETIC PROGRAMMING 229

data. As reviewed in Section 2.1, several researchers have observed that the
Ž w x.program size tends to grow without bound or ‘‘bloat’’ see, for example, 22 . In

this section we describe a Bayesian method for evolving parsimonious programs.

4.1. Algorithm description

Ž .The GP algorithm for the adaptive Occam method Figure 4 is the same as that of
the Bayesian GP procedure described in Figure 3, except three differences. The
first is the raw fitness calculated in step 2. The derivation of the fitness function is
given in Section 4.2. The second difference is in step 3, where the posterior

Ž . Ž . Ž .probability 13 is substituted for 7 ; in 13 the prior is revised each generation
Ž .while in 7 it is constant. The third is the additional step 6 for the revision of

priors.

4.2. Fitness e¨aluation

For a convenient implementation of the Bayesian evolutionary algorithm we take
Ž g .the negative logarithm of the posterior probability P A N D and use it as theg i

fitness function

F g s ylog P Ag N D , 18Ž . Ž .Ž .i g i

Ž .Figure 4. Outline of the Bayesian genetic programming with the adaptive Occam’s razor AOR .

ZHANG230

g Ž .where A g AA g . Then the evolutionary process is reformulated as a minimizationi
process

Ag s min arg min F g , 19Ž . Ž .b est iggFg Ž .A gAA gmax i

where the fitness function is expressed as

F g s ylog P D N Ag y log P Ag . 20Ž . Ž .Ž . Ž .i i i

As described in the previous section, we can write the likelihood function in
Ž . w xBayes’ theorem 1 in the form 9

1
P D N A s exp ybF 21Ž . Ž . Ž .DZ bŽ .D

Ž .where F is an error function, b controls the variance of the noise, and Z b is aD D
normalization factor. If we assume that the data has additive zero-mean Gaussian
noise, then the probability of observing a data value y for a given input vector x
would be

1 b 2g gP y N x, A s exp y f x; A y y 22Ž .Ž . Ž .Ž .i iž /Z b 2Ž .D

Ž .where Z b is a normalizing constant. Provided the data points are drawnD
independently from this distribution, we have

N
g gP D N A s P y N x , A 23Ž .Ž . Ž .Łi c c i

cs1

1
s exp ybF . 24Ž . Ž .DZ bŽ .D

Ž .where x , y g D are training cases and F is given asc c D

N1 2g gF s E D N A s f x ; A y y . 25Ž .Ž . Ž .Ž .ÝD i c i c2 cs1

If we also assume that a Gaussian prior on the architecture of program Ag, wei
have

1
gP A s exp yaF 26Ž . Ž .Ž .i AZ aŽ .A

BAYESIAN GENETIC PROGRAMMING 231

Ž .where Z a is a normalizing constant. For example, F can be chosen in the formA A

K1
g 2F s C A s u 27Ž .Ž . ÝA i k2 ks1

where u are the parameters defining the program Ag. This choice of priork i
distribution says that we expect the complexity parameters to be small rather than
large, thus implementing a parsimony pressure.

Ž . Ž . Ž .Substituting 24 and 26 into 20 , the fitness function can be expressed as

F g s bF q aF 28Ž . Ž .i D A

s bE D N Ag q a C Ag , 29Ž .Ž . Ž .i i

where the first term reflects the error and the second the model complexity.
Ž .The exact calculation of the constants b and a in equation 29 requires the

true probability distribution of underlying data structure, which is in most real
situations unknown. Instead, we define an adaptive fitness function in its most
general form as

F g s E g q a g C g , 30Ž . Ž . Ž . Ž . Ž .i i i

Ž . Ž .where E g and C g are the measures for error and complexity of the program,i i
Ž .and the parameter b is absorbed into the adaptive parameter a g which balances

the error and complexity factors as follows:

¡ 1 E g y 1Ž .b est
if E g y 1) eŽ .b est2 ˆN C gŽ .b est~a g s 31Ž . Ž .

1 1
otherwise.2¢ ˆN E g y 1 ? C gŽ . Ž .b est b est

w xThis is the adaptive Occam method 44 . User-defined constant e specifies the
Ž .maximum training error allowed for the run. E g y 1 is the error of the bestb est

ˆ Ž .program of generation g y 1. C g is the size of the best program at generationb est
g estimated at generation g y 1. These are used to balance the error and
complexity terms to obtain programs as parsimonious as possible while not sacrific-

ˆ Ž . w xing their accuracy. The procedure for estimating C g is given in 44 .b est

4.3. Discussion

The necessity and difficulty of non-coding segments or introns in genetic program-
w xming have been studied by many authors 22, 27, 39 . The adaptive Occam method

deals with the non-coding segment problem using a two-phase strategy by means of
Ž Ž . .an adaptive fitness function. In the first stage during E g y 1) e , theb est

ZHANG232

growth of non-coding segments is encouraged to increase the diversity of partial
Ž Ž . .solutions. In the second stage during E g y 1 F e , a strong parsimonyb est

pressure is enforced to prefer compact solutions. The transfer from the first stage
to the second is controlled by Bayesian inference under the constraint of the
user-defined parameter e .

Ž g .Note that the posterior probability P A N D can be computed from the fitnessg i
Ž .values F g by taking its exponential function:i

P D N Ag P AgŽ . Ž .i gy1 igP A N D sŽ .g i M g gÝ P D N A P AŽ . Ž .js1 j gy1 j

exp yE g y a g C gŽ . Ž . Ž .Ž .i is 32Ž .MÝ exp yE g y a g C gŽ . Ž . Ž .Ž .js1 j j

Ž g .This shows that the revision of priors P A is implemented as the update ofgy1 i
ˆŽ . Ž .a g in the adaptive Occam method since the priors are reflected in C g whichb est

Ž .leads to revision of a g .
Ž .We also note that minimization of F g is equivalent to the minimum descrip-i

Ž . w xtion length MDL principle 18, 30 : the best model is a model whose total code
Ž g g . Ž g g .length for model description L A N D and data description L D N A arei i i i

w xminimal. In information theory 12 the optimal description length for a model is
given as the negative logarithm of probability of the model:

L Ag s ylog P Ag . 33Ž .Ž . Ž .i i

Similarly, the code length for the data given the program Ag is given as:i

L D N Ag s ylog P D N Ag . 344 Ž .Ž . Ž .i i

Ž g . Ž g . Ž .L D N A and L A correspond to the two terms in 20 .i i

4.4. Experimental results

The adaptive Occam method for complexity control was applied to the multiagent
learning task. Experiments have been performed using the parameter values listed
in Table 4. The terminal set and function set consist of six primitives, respectively,
as given in Tables 2 and 3. A set of 200 training cases was used for evolving the
programs. An independent set of 200 cases was used for evaluating the generaliza-
tion performance of evolved programs.

Ž .The E g -values of program i at generation g are measured as the average ofi
Ž . Ž .its raw fitness values e g less is better for the cases c:i, c

N1
E g s e g , 35Ž . Ž . Ž .Ýi i , cN cs1

BAYESIAN GENETIC PROGRAMMING 233

Table 4. Parameters used in the experiments for GP with the adaptive Occam’s razor

Parameter Value

Population size 100
Max generation 30
Crossover rate 0.9
Mutation rate 0.1
Training cases 200
Test cases 200

Ž .where N is the number of fitness cases in the training set. Each e g -value wasi, c
computed by considering such factors as the distance between the target and the
robot, the number of collisions made by the robot, and the distance between
starting and final position of the robot. Note that in the multiagent task there is no
target output given for the training case. The goodness of a program is measured

Ž .by scores or penalties it collects by running the robots.
The complexity of a GP tree is defined as the size and depth of the tree:

C g s size Ag q k ? depth Ag , 36Ž . Ž .Ž . Ž .i i i

where k is a constant. We used k s 2.
Figure 5 compares the fitness values for GP with and without AOR, averaged

Ž .over 10 runs. Shown are the E g -values of the best individuals in each generationi
for each method. A tendency can be observed that the GP with the adaptive
Occam’s razor converges slightly faster than the baseline GP, though there is no
significant difference in their final fitness. Figure 6 compares the typical changes of
program complexity for both methods. The tree complexity was measured in terms
of the tree size plus 2 = depth.

Ž Ž . .Figure 5. Comparison of fitness values E g -component only of the genetic programs for thei
multiagent task. A tendency can be observed that the GP with the adaptive Occam’s razor converges
slightly faster than the baseline GP, though there is no significant difference in their final fitness.

ZHANG234

Figure 6. Evolution of the complexity of GP trees for the multiagent task. The GP with the adaptive
Ž . Ž .Occam’s razor AOR promotes the trees to grow when significant fitness error reduction is required,

Ž .while it prefers smaller trees to larger ones when their fitness error is comparable. In contrast, the GP
without the Occam factor tends to grow as generation goes on.

More detailed results are summarized in Table 5. The GP with AOR achieved,
on average, a 20% reduction of program complexity without loss of solution

Ž .accuracy in fact, with a slight improvement both in training and test performances .
It can be concluded that the adaptive Occam method evolves smaller programs
without loss of generalization capability of the programs.

5. Bayesian GP for accelerated evolution

5.1. Algorithm description

Ž .The algorithm for incremental data inheritance Figure 7 is the same as the GP
with AOR, except that the training set D g now increases with generation. Thei
additional step for this modification is step 5, where the training set grows by
inheritance. The next section details the data inheritance procedure.

Ž .Table 5. Effects of the adaptive Occam’s razor AOR on the complexity and average fitness values of
GP programs for the multiagent learning task

Average Fitness

Method Complexity Training Test

Baseline 31.4 " 6.5 222.1 " 10.3 228.7 " 12.3
AOR 25.0 " 5.5 215.8 " 8.3 221.3 " 7.6

The sizes of training and test sets were 200, respectively. The values are averaged over ten runs.

BAYESIAN GENETIC PROGRAMMING 235

Ž .Figure 7. Outline of the Bayesian genetic programming with incremental data inheritance IDI .

5.2. Data inheritance procedure

The basic idea in genetic programming with incremental data inheritance is that
programs and their data are evolved at the same time. With each program is
associated a separate data set. We describe a variant of uniform crossover that we
call uniform data crossover. A simplified example for illustrating this process is
given in Figure 8.

First, two parent data sets, D g and D g, are crossed to inherit their subsets to twoi j
offspring data sets, D gq1 and D gq1. Second, the data of parents’ are mixed into ai j
union set

D g s D g j D g , 37Ž .iq j i j

which is then redistributed to two offspring D gq1 and D gq1, where the size ofi j
offspring data sets is equal to N s N q l, where l G 1 is the data incrementgq1 g
size. Thus, the size of data sets monotonically increases as generation goes on.

To maintain the diversity of the training data during inheritance we import some
portion of data from the base set. The import rate r is given asi

r s r ? 1 y d , 0 F r F 1. 38Ž . Ž .i i

ZHANG236

Figure 8. An illustrative example for data inheritance in IDI. Two parent data sets, D g and D g, arei i
merged to form the union set, D g , which is then inherited to two offspring data sets, D gq1 and D gq1.iq j i j
The off-spring data points with shaded circles are the examples imported from the base data set D to
maintain the diversity of data sets.

where r is a constant for import strength. The diversity d is measured as the ratioi
of distinctive examples in the union set:

< g <Diq j
d s y 1, 0 F d F 1. 39Ž .i ig< <Di

Figure 8 illustrates the process of data inheritance, where two parent data sets of
size 6 each are unioned to form the genetic pool of size 10, from which two
offspring data sets of size 8 each are inherited. Marked are the data imported from
the basis data set to maintain the diversity.

5.3. Fitness e¨aluation

As in the implementation of the Bayesian GP with the adaptive Occam’s razor, we
Ž g .take the negative logarithm of P A N D and use it as the fitness functiong i

F g s ylog P Ag N D g , 40Ž . Ž .Ž .i g i i

g Ž . g Ž g g . Ž .where A g AA g , D ; D, and P A N D are defined by 15 :i i g i i

P D g N Ag P Ag N D gy1Ž . Ž .i i gy1 i ig gP A N D s . 41Ž .Ž .g i i M g g g gy1Ý P D N A P A N DŽ . Ž .js1 j j gy1 j j

Then the evolutionary process is reformulated as a minimization process

Ag s min arg min F g , 42Ž . Ž .b est ig ggFg A , Dmam i i

where the fitness function is expressed as

F g s ylog P D g N Ag y log P Ag N D gy1 . 43Ž . Ž .Ž . Ž .i i i gy1 i i

BAYESIAN GENETIC PROGRAMMING 237

Using the similar arguments as in Section 4.2 we can write the likelihood
function and the prior distribution of programs in the form

1
g gP D N A s exp ybF 44Ž . Ž .Ž .i i DZ bŽ .D

1
g gy1P A N D s exp yaF 45Ž . Ž .Ž .gy1 i i AZ aŽ .A

Ž . Ž .where Z b and Z a are normalizing constants.D A
We define an adaptive fitness function in its most general form as

F g s E g q a g C g , 46Ž . Ž . Ž . Ž . Ž .i i i

Ž . Ž .where E g and C g represents the error factor F and complexity factor Fi i D A
Ž . Ž .with a and b absorbed into a g . The parameter a g balances these two factors

as follows

¡ 1 E g y 1Ž .b est
if E g y 1) eŽ .b est2 ˆN C gŽ .g b est~a g s 47Ž . Ž .

1 1
otherwise.2¢ ˆN E g y 1 ? C gŽ . Ž .g b est b est

This is a generalization of the adaptive Occam method in that N is now a variable,g
rather than fixed value N, and scheduled to increase monotonically as a function of
generation g.

5.4. Discussion

The incremental data inheritance method has interesting properties that character-
ize the stability of the algorithm as generation goes on. It maintains a growing
subset of given fitness cases for each program. The monotonic growth of the fitness
subset ensures that the IDI method eventually achieves the same level of perfor-
mance as that of the baseline algorithm. This is contrasted with many of existing

w x w xmethods for fitness case selection, including LEF 14 and RAT 38 . Maintaining a
separate subset for each program allows the learned component of the program
can be retained during evolution. At the same time, the import of new fitness cases
from the base set allows the programs to learn new situations, thus leading to
gradual improvement in performance.

5.5. Experimental results

Ž .We compare the performance of the GP with incremental data inheritance IDI to
the baseline GP, i.e. one that uses the complete training cases from the outset.
Experiments have been performed using the parameter values listed in Table 6. GP

ZHANG238

Table 6. Parameters used in the experiments for GP with
incremental data inheritance

Parameter Value

Population size 100
Max generation 30
Crossover rate 0.9
Mutation rate 0.1
Training cases 200
Test cases 200

Ž .Initial data size N 200
Ž .Data increment size l 6

runs with IDI used 20 q 6 g examples for each generation g selected from the
given data set, i.e. N s 20, l s 6, for fitness evaluation. For all methods, a total0
of 200 training cases were used for training and an independent set of 200 test
cases was used for evaluating the generalization performance of evolved programs.

Ž . Ž .Fitness factors E g and C g are the same as in the experiments for GP with thei i
Ž .adaptive Occam’s razor, except that the training set size for E g is now Ni g

instead of N.
Results are shown in two different forms. Figure 9 shows the evolution of fitness

as a function of the generation number, in which there is no significant difference
in the performance. Since the GP with IDI uses variable data size, computing time
at each generation should be measured by a product of the population size and the
data size. This result is shown in Figure 10, where IDI achieved a speed-up factor
of approximately four compared with the baseline GP. More detailed results are

Ž .summarized in Table 7. The incremental data inheritance IDI method used only
50% of the time required for the baseline GP. It is interesting to see that, despite

Figure 9. Comparison of fitness values as a function of the generation number. The curves are mean
values over ten runs. The GP with IDI shows no loss of fitness values compared to that of the baseline
GP algorithm.

BAYESIAN GENETIC PROGRAMMING 239

Figure 10. Comparison of fitness values as a function of the number of function evaluations. The
curves are mean values over ten runs. The GP with IDI converges much faster than the baseline GP
algorithm.

Ž .Table 7. Effects of incremental data inheritance IDI on the time and average fitness
Ž .values lower is better of GP programs for the multiagent learning task. The sizes of

training and test sets were 200, respectively. The values are averaged over ten runs. Time is
measured as the total number of fitness evaluations. Also shown are the standard deviations.

Average Fitness

Method Time Training Test

Baseline 1,220,000 215.8 " 8.3 221.3 " 7.6
IDI 662,000 217.4 " 9.4 219.9 " 13.5

the reduced data size, the generalization performance of the GP with IDI was
slightly better than that of the baseline GP.

6. Concluding remarks

We have presented a Bayesian framework for genetic programming. Two specific
GP algorithms were derived from this framework for reducing the time and space
complexity of genetic programming. Applied to the multiagent learning task, the

Ž .first method, i.e. GP with the adaptive Occam’s razor AOR , achieved approxi-
mately 20% reduction of program complexity without any loss in fitness values. The
second Bayesian approach to genetic programming, i.e. the incremental data

Ž .inheritance IDI method, used only 50% of the time required for the baseline GP
to achieve the same or a little better fitness level.

Though this improvement is significant, it should be mentioned that there is still
much room for further reduction of spacertime complexity of genetic program-
ming. Future work should address the following issues, among others. One is
incorporating better genetic operators. We have focused in the present work on

ZHANG240

dynamics at the phenotypic level. Further improvement can be achieved by finding
more ‘‘intelligent’’ variation operators that adapt to the dynamics at the genotypic
level. In terms of Bayesian genetic programming, this involves adapting proposal
functions. The second issue is to improve modularity of genetic programs by
automatically designing and adapting reusable submodules such as ADFs or
libraries. This, combined with the Occam’s razor, will further improve the compre-
hensibility and reusability of genetic programs as well as speed up the GP process.

From the theoretical point of view, the Bayesian framework for genetic program-
ming provides a number of important features. One is that, by formulating the GP
process as Bayesian inference, principled techniques for driving evolutionary dy-
namics of conventional GPs can be developed. In addition to the methods pre-
sented in this paper, one can think of other methods within the framework. For
example, decision-making can be made more robust by combining multiple pro-
grams instead of a single GP tree. The Bayesian GP framework provides a
principled way to combine multiple programs to build a committee machine.

Another important feature of Bayesian inference is that it allows background
knowledge in the problem domain to be incorporated in a formal way. For
instance, if we can guess the distribution of specific function symbols for good GP
trees, this knowledge can be reflected in the application probabilities of genetic
operators. Background knowledge is important especially for solving real-life
problems of practical interest.

Finally, the Bayesian analysis of genetic programming appears to be a useful tool
for incorporating various genetic programming procedures into a uniform frame-
work. A theoretical framework is crucial for the design and comparative analysis of
various genetic programming algorithms.

Acknowledgments

This research was supported by the Korea Science and Engineering Foundation
Ž . Ž .KOSEF Granta 981-0920-350-2, by the Korea Research Foundation KRF
Granta 1998-001-E01025, and by the Korea Ministry of Science and Technology
through KISTEP Granta BR-2-1-G-06. Thanks to Wolfgang Banzhaf and three
anonymous reviewers for helpful comments that improved the readability of the
paper.

References

1. D. Andre, ‘‘Automatically defined features: The simultaneous evolution of 2-dimensional feature
Ž .detectors and an algorithm for using them,’’ In K. E. Kinnear, Jr. ed , Advances in Genetic

Programming, MIT Press: Cambridge, MA, 1994, Chapter 23, pp. 477]494.
2. P. J. Angeline and J. B. Pollack, ‘‘Coevolving high-level representations, in Artificial Life III, C. G.

Ž .Langton ed. , Addison-Wesley: Reading, MA, 1993.
Ž .3. P. J. Angeline, ‘‘Genetic programming and emergent intelligence,’’ in K. E. Kinnear, Jr. ed. ,

Advances in Genetic Programming, MIT Press: Cambridge, MA, 1994. Chapter 4, pp. 75]98.

BAYESIAN GENETIC PROGRAMMING 241

4. P. J. Angeline, ‘‘Subtree crossover: Building block engine or macromutation?’’ in J. R. Koza, et al.
Ž . Ž .eds. , The Second Genetic Programming Conf. GP-97 , Morgan Kaufmann, San Francisco, CA,
1997, pp. 9]17.

5. T. Back, Evolutionary Algorithms in Theory and Practice, Oxford, UK: Oxford University Press,¨
1996.

6. W. Banzhaf, F. Francone, and P. Nordin, ‘‘The effect of extensive use of the mutation operator on
generalization in genetic programming using sparse data sets,’’ In Proc. 4th Int. Conf. on Parallel

Ž .Problem Solving from Nature PPSN-96 , W. Ebeling, I. Rechenberg, H.-P. Schwefel, H. M. Voigt
Ž .eds. , Springer: Berlin, 1996, pp. 300]309.

7. W. Banzhaf, P. Nordin, and F. Francone, ‘‘On some emergent properties of variable size evolution-
ary algorithms,’’ in ICGA-97 Workshop on Evolutionary Computation with Variable-Size Represen-
tation, 1997, http:rrwww.ai.mit.edurpeoplerunamayricga-ws.html.

8. W. Banzhaf, P. Nordin, R. Keller, and F. Francone, Genetic Programming: An Introduction,
Morgan Kaufmann: San Francisco, CA.

9. C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University Press: Oxford, UK,
1995.

10. T. Blickle, ‘‘Evolving compact solutions in genetic programming: A case study,’’ in H.-M. Voigt et al.
Ž .eds. , Parallel Problem Solving from Nature IV, Springer-Verlag: Berlin, 1996, pp. 564]573.

11. K. Chellapilla, ‘‘Evolutionary programming with tree mutations: Evolving computer programs
Ž . Ž .without crossover,’’ in J. R. Koza, et al. eds. , The Second Genetic Programming Conf. GP-97 ,

Morgan Kaufmann: San Francisco, CA, 1997, pp. 431]438.
12. T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley: New York, 1991.
13. C. Gathercole and P. Ross, ‘‘Dynamic training subset selection for supervised learning in genetic

Ž .programming,’’ in Parallel Problem Solving from Nature III, Y. Davidor, et al. Eds. , Springer-
Verlag: Berlin, 1994, pp. 312]321.

14. C. Gathercole and P. Ross, ‘‘Small populations over many generations can beat large populations
Ž .over few generations in genetic programming,’’ in J. R. Koza, et al. eds. , The Second Genetic

Ž .Programming Conf. GP-97 , Morgan Kaufmann: San Francisco, CA, 1997, pp. 111]118.
15. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, Chapman & Hall:

London, 1995.
16. T. Haynes, ‘‘Perturbing the representation, decoding, and evaluation of chromosomes,’’ in J. R.

Ž . Ž .Koza, et al. eds. , The Third Genetic Programming Conf. GP-98 , Morgan Kaufmann: San
Francisco, CA, 1998, pp. 122]127.

17. D. Hillis, ‘‘Co-evolving parasites improves simulated evolution as an optimization procedure,’’ in
Ž .Artificial Life II, C. Langton, et al. Eds. , Addison-Wesley: Reading, MA, 1992, pp. 313]324.

18. H. Iba, H. de Garis, and T. Sato, ‘‘Genetic programming using a minimum description length
Ž .principle,’’ in K. E. Kinnear, Jr. ed. , Advances in Genetic Programming, MIT Press: Cambridge,

MA, 1994, Chapter 12, pp. 265]284.
19. K. E. Kinnear, Jr. ‘‘Generality and difficulty in genetic programming: Evolving a sort,’’ in Proc. of

Ž . Ž .5th Int. Conf. on Genetic Algorithms ICGA-93 , S. Forrest ed. , Morgan Kaufmann: San
Francisco, CA, 1993, pp. 287]294.

20. J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural
Selection, MIT Press: Cambridge, MA, 1992.

21. J. R. Koza, ‘‘Scalable learning in genetic programming using automatic function definition,’’ in K. E.
Ž .Kinnear, Jr. ed. , Advances in Genetic Programming, MIT Press: Cambridge, MA, 1994, Chapter 5,

pp. 99]117.
22. W. B. Langdon and R. Poli, ‘‘Fitness causes bloat: Mutation,’’ in W. Banzhaf, R. Poli, M.

Ž .Schoenauer, and T. Fogarty eds. , The First European Workshop on Genetic Programming
Ž .EuroGP’98 , Paris, LNCS 1391, Springer-Verlag: Berlin, 1998, pp. 37]48.

23. W. B. Langdon, ‘‘Size fair and homologous tree crossovers,’’ Genetic Programming and Evolvable
Ž .Machines, vol. 1 1 , pp. 95]119, 2000.

24. S. Luke and L. Spector, ‘‘A comparison of crossover and mutation in genetic programming,’’ in J. R.
Ž . Ž .Koza, et al. eds. , The Second Genetic Programming Conf. GP-97 , Morgan Kaufmann: San

Francisco, CA, 1997, pp. 240]248.

ZHANG242

25. H. Muhlenbein and D. Schlierkamp-Voosen, ‘‘The science of breeding and its application to the¨
Ž .breeder genetic algorithm,’’ Evolutionary Computation, vol. 1 4 pp. 335]360, 1994.

26. R. M. Neal, ‘‘Probabilistic inference using Markov chain Monte Carlo methods,’’ Technical Report
CRG-TR-93-1, Dept. of Computer Science, University of Toronto, 1993.

27. P. Nordin, F. Francone, and W. Banzhaf, ‘‘Explicitly defined introns and destructive crossover in
Ž .genetic programming,’’ in P. J. Angeline and K. E. Kinnear, Jr. eds. , Advances in Genetic

Programming 2, MIT Press: Cambridge, MA, 1996, pp. 111]134.
28. U.-M. O’Reilly, ‘‘Investigating the generality of automatically defined functions,’’ in The First

Ž . Ž .Genetic Programming Conf. GP-96 , J. R. Koza eds. , Morgan Kaufmann: San Francisco, CA,
1996, pp. 351]356.

29. R. Poli, and W. B. Langdon, ‘‘On the search properties of different crossover operators in genetic
Ž .programming,’’ The Third Genetic Programming Conf. GP-98 , Morgan Kaufmann: San Francisco,

CA, 1998, pp. 293]301.
30. J. Rissanen, ‘‘Stochastic complexity and modeling,’’ Ann. Statist. vol. 14, pp. 1080]1100, 1986.
31. J. P. Rosca, ‘‘Analysis of complexity drift in genetic programming,’’ in The Second Genetic

Ž . Ž .Programming Conf. GP-97 , J. R. Koza eds. , Morgan Kaufmann: San Francisco, CA, 1997, pp.
286]294.

32. J. P. Rosca and D. H. Ballard, ‘‘Discovery of subroutines in genetic programming,’’ in P. J. Angeline
Ž .and K. E. Kinnear, Jr. ed. , Advances in Genetic Programming 2, MIT Press: Cambridge, MA,

1996, pp. 177]201.
33. M. Schoenauer, M. Sebag, F. Jouve, B. Lamy, and H. Maitournam, ‘‘Evolutionary identification of

macro-mechanical models,’’ in Advances in Genetic Programming 2, P. J. Angeline and K. E.
Ž .Kinnear, Jr. eds. , MIT Press: Cambridge, MA, 1996, pp. 467]488.

34. E. V. Siegel, ‘‘Competitively evolving decision trees against fixed training cases for natural language
Ž .processing,’’ in Advances in Genetic Programming, K. E. Kinnear, Jr. ed. , MIT Press: Cambridge,

MA, 1994, Chapter 19, pp. 409]423.
35. T. Soule, J. A. Foster, and J. Dickinson, ‘‘Code growth in genetic programming,’’ in The First

Ž . Ž .Genetic Programming Conf. GP-96 , J. P. Koza, et al. eds. , Morgan Kaufmann: San Francisco,
CA, 1996, pp. 215]223.

36. T. Soule and J. A. Foster, ‘‘Effects of code growth and parsimony pressure on populations in genetic
Ž .programming,’’ Evolutionary Computation vol. 6 4 , pp. 293]309, 1998.

37. L. Spector, ‘‘Simultaneous evolution of programs and their control structures,’’ in Advances in
Ž .Genetic Programming 2, P. J. Angeline and K. E. Kinnear, Jr. eds. , MIT Press: Cambridge, MA,

1996, Chapter 7, pp. 137]154.
38. A. Teller and D. Andre, ‘‘Automatically choosing the number of fitness cases: The rational

Ž . Ž .allocation of trials,’’ in The Second Genetic Programming Conf. GP-97 , J. R. Koza, et al. eds. ,
Morgan Kaufmann: San Francisco, CA, 1997, pp. 321]328.

39. A. S. Wu and R. K. Lindsay, ‘‘Empirical studies of the genetic algorithm with noncoding segments,’’
Ž .Evolutionary Computation, vol. 3 2 , pp. 121]147, 1996.

Ž .40. B.-T. Zhang, ‘‘Accelerated learning by active example selection,’’ Int. J. Neural Syst. vol. 5 4 pp.
67]75, 1994.

41. B.-T. Zhang, ‘‘A Bayesian framework for evolutionary computation,’’ in The 1999 Congress on
Ž .Evolutionary Computation CEC99 , Special Session on Theory and Foundations of Evolutionary

Computation, IEEE Press, 1999, pp. 722]727.
42. B.-T. Zhang and J.-G. Joung, ‘‘Genetic programming with incremental data inheritance,’’ In The

Ž . Ž .1999 Genetic and Evolutionary Computation Conf. GECCO-99 , W. Banzhaf et al. eds. , Morgan
Kaufmann: San Francisco, CA, 1999, pp. 1217]1224.

43. B.-T. Zhang and H. Muhlenbein, ‘‘Genetic programming of minimal neural nets using Occam’s¨
Ž . Ž .razor,’’ in Proc. of 5th Int. Conf. on Genetic Algorithms ICGA-93 , S. Forrest ed. , Morgan

Kaufmann: San Francisco, CA, 1993, pp. 342]349.
44. B.-T. Zhang and H. Muhlenbein, ‘‘Balancing accuracy and parsimony in genetic programming,’’¨

Ž .Evolutionary Computation, vol. 3 1 pp. 17]38, 1995.
45. B.-T. Zhang, P. Ohm, and H. Muhlenbein, ‘‘Evolutionary induction of sparse neural trees,’’¨

Ž .Evolutionary Computation, Vol. 5 1 pp. 213]236, 1997.

