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Abstract: Evolutionary algorithms have been successfully applied to the design and training of neural networks, such as in
optimization of network architecture, learning connection weights, and selecting training data. While most of existing evolutionary
methods are focused on one of these aspects, we present in this paper an integrated approach that employs evolutionary mechanisms
for the optimization of these components simultaneously. This approach is especially effective when evolving irregular, not-
strictly-layered networks of heterogeneous neurons with variable receptive fields. The core of our method is the neural tree
representation scheme combined with the Bayesian evolutionary learning framework. The generality and flexibility of neural
trees make it easy to express and modify complex neural architectures by means of standard crossover and mutation operators.
The Bayesian evolutionary framework provides a theoretical foundation for finding compact neural networks using a small data
set by principled exploitation of background knowledge available in the problem domain. Performance of the presented method
is demonstrated on a suite of benchmark problems and compared with those of related methods.

1. Introduction

Evolutionary algorithms have been successfully ap-
plied to the design and learning of neural networks.
Hinton and Nowlan [14] study the interaction between
learning and evolution in neural networks. Mühlenbein
and Kindermann [23] suggest general schemes for
evolving neural networks. Montana and Davis [22] and
Fogel et al. [8] present evolutionary methods to train
the connection weights of neural networks. They re-
port some encouraging results which are comparable
with conventional learning algorithms. Evolutionary
algorithms have also been used to optimize the topol-
ogy of neural networks that best fits to the specified
task according to some explicit design criteria [32].
All these methods have been applied to conventional
neural network architectures, such as strictly-layered
feedforward networks.

However, some tasks can be solved much bet-
ter by using network architectures which are non-

conventional in terms of neuron types and network
topology. An example of this class of architectures is
the sigma-pi networks that have product units as well
as sigma units as the primitive units [7]. Though the
usefulness of these architectures are well-known, one
difficulty involved with these networks is that no stan-
dard algorithms are available for their design and train-
ing [11].

In this paper, we present an evolutionary method that
is suitable for the design and training of novel neu-
ral networks. The network architectures we evolve
are non-conventional in the sense that neural units of
heterogeneous types may be contained within a single
network and the neurons are not-strictly layered and
have irregular connectivity. In contrast to conventional
learning algorithms, evolutionary algorithms do not re-
quire strong assumptions on the search space, such as
continuity or differentiability, enabling to explore the
space of novel network architectures. Our method is
based on the neural tree representation scheme which is
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general and flexible enough to represent a broad class
of network architectures and to manipulate the architec-
tures using standard crossover and mutation operators.
Feature selection problems are naturally handled by the
neural trees since each node (neuron) in the tree can
have a different number of children (other neurons or
external inputs) and the children are modified through
the usual genetic operators.

An important feature of the proposed evolutionary
method is the use of an adaptive fitness function. This
is based on the observation that fitness functions are es-
sential for successful application of evolutionary algo-
rithms to neural networks in practical applications. The
enormous size of the search space prohibits straight-
forward evolutionary methods from successful appli-
cation. Just as a good representation can transform the
original, difficult problem to a more manageable prob-
lem, the choice of a good fitness function makes the
search smoother.

The adaptive fitness function is based on the
Bayesian inductive principle [10]. It has an error term
and complexity term to effectively balance the accu-
racy of the network and its complexity. According to
the Occam’s Razor principle [36], the best neural net-
work is the simplist one with a small number of neurons
and sparse connectivity. The weights are trained not
by back-propagation [28], but by another evolutionary
algorithm for continuous parameter optimization. In
this work we also incorporate the incremental data in-
heritance (IDI) method [35] into the adaptive fitness
function. The IDI method starts evolution with a small
data set for fitness evaluation and expands the data set
as generation goes on. It proved useful for accelerating
the evolution of Lisp-like symbolic programs.

The paper is organized as follows. Section 2 reviews
the previous work on applying evolutionary computa-
tion to neural networks. In Section 3, we present the
neural tree representation and discuss its properties.
Section 4 describes the theoretical foundation of the
Bayesian approach to evolving heterogeneous neural
trees. Section 5 describes implementation details for
evolving neural trees. Section 6 presents the experi-
mental results. Section 7 discusses the synergy effects
of evolutionary algorithms and neural networks from
our experience.

2. Related work

Evolutionary algorithms have been used for neural
networks in several applications. These include the
selection of

– connection weights
– network topologies, and
– weight update rules.

Schaffer et al. [31] and Yao [33] provide comprehensive
reviews of combining evolutionary algorithms and neu-
ral networks. A general way of evolving genetic neural
networks was suggested by Mühlenbein and Kinder-
mann [23]. Several early studies have used evolution-
ary algorithms to optimize the connection weights of
neural networks [8,22]. Recent works, however, have
focused on using evolutionary algorithms to optimize
the network topology. Harp et al. [13] and Miller [21]
have described representation schemes in which the
anatomical properties of the network structure are en-
coded as bit-strings. Similar representation has also
been used by Whitley et al. [32] to prune unnecessary
connections. Kitano [18] and Gruau [12] have sug-
gested encoding schemes in which a network configura-
tion is indirectly specified by a graph generation gram-
mar which is evolved by genetic algorithms.1 Radi
and Poli [27] use an evolutionary algorithm to discover
learning rules for neural networks.

All the methods mentioned above use the back-
propagationalgorithm [28], a gradient-descentmethod,
to train the weights of the network. Yao and Liu [34]
present an evolutionary system that simultaneously
evolves both neural network architectures and weights.
Here, the architectures are modified by mutations that
add or delete nodes/connections. Weights are trained
by a modified back-propagation algorithm with an ad-
ditive learning rate and by a simulated annealing algo-
rithm. Koza [20] provides an alternative approach to
representing neural networks, under the framework of
so-called genetic programming, which enables modi-
fication not only of the weights but also of the archi-
tecture for a neural network. However, this method
provides neither a general method for representing an
arbitrary feedforward network, nor a mechanism for
finding a network of minimal complexity. Angeline et
al. [2] present an evolutionary method for constructing
recurrent neural networks.

In addition to the three typical applications of evo-
lutionary computation to neural networks, as described

1We use the terms evolutionary algorithms and evolutionary com-
putation as a general concept that includes evolution strategies, evo-
lutionary programming, genetic algorithms, genetic programming,
and other computational methods gleaned from natural evolution.
The term genetic algorithms will be reserved in this paper to denote
the class of evolutionary algorithms that use binary strings (usually
with fixed length) as their representation.
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above, more recent developments also include the se-
lection of

– neuron types
– receptive fields, and
– training data sets.

Some neuron types are more natural to represent
the solution for the specific problem than others [11].
Therefore, it is natural to think of non-conventional
neurons. Likewise, some input variables (features) to
a neural unit are more important than others, and it is
necessary to select input variables or receptive fields
of units [7,19]. Selection of training data sets is also
useful since the evolutionaryprocess can be accelerated
by a representative subsample of the given data set [25,
39].

One of the main issues in efficient evolution of neu-
ral networks is the representation or encoding of neural
networks in genotype. Existing representation meth-
ods can be roughly divided into two categories: direct
and indirect encoding [4,33]. Direct encodings use a
fixed structure, such as connection matrix or bitstrings
that precisely specifies the architecture of the corre-
sponding neural network. This encoding scheme re-
quires little effort to decode. However, matrix struc-
tures have limited flexibility in expressing topologies
of the network structure with variable layers. Bitstrings
are not flexible enough to represent various partial con-
nectivity without further annotation. Genetic operators
need to be applied carefully to preserve the topological
constraints of networks [5].

Indirect encoding schemes use rewrite rules to spec-
ify a set of construction rules that are recursively ap-
plied to yield the phenotype. Examples include graph
generation grammars [18] and cellular encoding [12].
This approach is interesting in that it simulates in some
sense the developmental process. Subtree crossover
applies well to these representations. In addition, ex-
perimental evidence has shown that the cellular encod-
ing scheme is effective in evolving modular structures
consisting of similar substructures [12]. However, the
grammatical encoding seems only appropriate for ex-
ploring a search space having a regular structure. It
seems not very suitable for a search space consisting
of a huge number of partial interaction possibilities as
required in our application. In addition, grammatical
encoding requires execution of rewrite-rules for every
conversion from genotype to phenotype. This makes
network training an expensive phase since training of
neural networks requires a large number of evaluations
and each evaluation needs a separate decoding.

We present in the following section an alternative
representation which combines the advantages of di-
rect and indirect encoding schemes. It is powerful and
flexible in expressing a broad class of feedforward ar-
chitectures. It is decoding-efficient and convenient for
genetic operations.

3. Tree representations of neural networks

3.1. Neural trees

Let NT (d, b) denote the set of all possible trees
of maximum depthd and maximumb branches for
each node. The nonterminal nodes represent neural
units and the neuron type is an element of the basis
function setF = {neuron types}. Each terminal node
is labeled with an element from the terminal setT =
{x1, x2, . . . , xn}, wherexi is theith component of the
external inputx. Each link(j, i) represents a directed
connection from nodej to nodei and is associated with
a valuewij , called the synaptic weight. The members
of NT (d, b) are referred to as neural trees. In case of
F = {Σ,Π}, the trees are specifically called sigma-pi
neural trees. The root node is also called the output unit
and the terminal nodes are called input units. Nodes
that are not input or output units are hidden units. The
layer of a node is defined as the longest path length to
any terminal node of its subtree.

Different neuron types are distinguished in the way
of computing net inputs. For example, consider two
different types of units: sigma and pi units. Sigma units
compute the sum of weighted inputs from the lower
layer:

neti =
∑

j

wijyj , (1)

whereyj are the inputs to theith neuron. Pi units
compute the product of weighted inputs from the lower
layer:

neti =
∏
j

wijyj , (2)

whereyj are the inputs toi. The output of a neuron is
computed the sigmoid transfer function

yi = f(neti) =
1

1 + e−neti
, (3)

where neti is the net input to the unit computed by
Eqs (1) or (2).

Another type of neuron commonly used is the radial
basis function (RBF) units. Given an input vectorx,
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Fig. 1. Genotype (top) and phenotype (bottom) of a neural tree.

an RBF computes the output as

yi = gi(x) = exp
{
σi

−1||x− ci||
}
, (4)

whereci andσi are the center and width of theith
Gaussian unit. As will be clear in later sections, any
other non-conventional neuron types can be employed
in neural trees since they are learned by an algorithm
that does not assume any strict constraints, such as
continuity or differentiability, on the search space.

3.2. Expressive power and computational complexity

Neural trees can represent a broad class of neural net-
works. In particular, it can represent complete higher-
order neurons. The net input of the complete higher-
order neuron is given by the multinomial expansion

neti(x) =
∑

a∈{0,1}n

waπa(x)

(5)

=
∑

a∈{0,1}n

wa
n∏

j=1

x
aj

j ,

wherewa ∈ IR, a = a1 . . . an ∈ {0, 1}n, and x
denotes the original input vector. The2n monomi-
als πa are referred to as Walsh functions. They are
orthogonal and span the space of real valued func-
tions defined over binary strings. The expansion coef-
ficientsw00..00, w00..01, . . . , w11..11 can be interpreted
as synaptic weights of orders

∑n
j=1 aj . Note that a

complete higher-order neuron can be represented by

a tree consisting of a summation (sigma) unit and2n

product (pi) units.
The complete higher-order neuron is practically lim-

ited by the combinatorial explosion of higher-order
terms with increasing number of inputs. The number of
parameters necessary for specifying an orderk neuron
is rk =

∑k
i=0 nCi, wheren is the number of inputs. A

closely related disadvantage is that it does not produce
a generalization; it makes up a fast distributed memory
with a target fixed at each corner of the hypercube [7].

Note that neural trees can represent a broad class of
higher-order networks. There is no explicit limit on the
order of weights. Thus, interactions of arbitrary orders
computed by the ultimate higher-order neuron can be
realized within our framework. Cascading of higher-
order terms in multilayers is permitted. No bound is
enforced in the number of layers of the network. In-
stead, the overall network size is controlled implicitly
by a complexity penalty imposed in the fitness func-
tion. The network structures are not strictly layered,
i.e. each layer can have a mixture of sigma, pi, and
any other types of units, and connections between non-
neighboring layers are allowed. The network may con-
tain partial connectivity, which is useful for the eco-
nomic representation of arbitrary complex interactions.

Neural trees do not require decoding for their fit-
ness evaluation. Training and evaluation of fitness can
be performed directly on the genotype since both the
genotype and phenotype are equivalent. Note that neu-
ral trees have a closure property, i.e. replacement of
a subtree by another neural tree results in a correct
neural tree structure. This is the reason why standard
crossover and mutation operators can be used for adap-
tation of neural trees. Since subtree crossover used
in genetic programming [20] applies without modifi-
cation to this representation, genetic programming can
be used as an evolutionary engine. However, searching
the whole space of all possible neural tree is impossible
in practice.

To see the complexity of the problem, we compute
the size of the search space of neural trees. Consider a
full tree of depthd and branching factorb. The number
of nonterminal nodes in this tree structure is

1 + b1 + b2 + b3 + · · ·+ bd−1 =
bd − 1
b− 1 . (6)

The number of terminal nodes isbd. An instance of
the tree consists of the nonterminal nodes with asso-
ciated labels chosen from the function setF and the
terminal nodes instantiated with labels from the termi-
nal setT . Thus, the number of possible architectures
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NT (d, b) is given by

|A| = |F|
bd−1
b−1 · |T |bd

, (7)

where|F| and |T | are the sizes ofF andT , respec-
tively.

The parameters in the neural trees consist of connec-
tion weights and biases. The number of weights in the
full tree of depthd and branching factorb is the same as
the number of nonterminal nodes plus terminal nodes
minus one (root node):

b1 + b2 + b3 + · · ·+ bd =
bd+1 − b
b− 1 . (8)

The number of biases is the same as the number of
nonterminal nodes:(bd − 1)/(b− 1). Total number of
parameters is the sum of both:

bd+1 − b
b− 1 +

bd − 1
b− 1 =

bd+1 + bd − b − 1
b− 1 . (9)

If we assume for simplicity that the parameter takes
a value from a setV of finite size|V|, the size of the
parameter space is given by

|W| = |V|
bd+1+bd−b−1

b−1 (10)

As an illustration, consider the program space of
|F| = |{Σ,Π}| = 2, |T | = 5, d = 3, b = 5, and
|V | = 100. In this case the size of structure space is
|A| = 231 · 5125 and the size of weight space amounts
to |W| = 100186, which prohibits any exhaustive or
simplistic heuristic search methods. This motivates us
to use a principled method for evolving neural trees.

4. Theoretical foundation

In this section we present the theory and general
principles for evolutionary computation for designing
and evolving neural trees. This section aims to provide
an outline of the Bayesian approach and the algorithms
are detailed in the following section.

In the Bayesian approach to neural tree evolution, the
best neural tree is defined as themost probable model
of the data, given the dataD plus the prior knowledge
on the problem domain. Bayes theorem provides a
direct method for calculating such probabilities [10]. It
states that the posterior (i.e. after observing the data
D) probability of a neural treeA is

P (A|D) = P (D|A)P (A)
P (D)

(11)

=
P (D|A)P (A)∫

A P (D|A)P (A)dA
,

whereA is the space ofall possible neural trees (in
case ofA taking discrete values, the integral will be
replaced by summation). HereP (A) is the prior (i.e.
before observing the data) probability distribution for
the neural trees, andP (D|A) is the likelihood of the
neural tree for the data.

The objective of the Bayesian evolutionary algorithm
is to find a neural treeAg

best that maximizes the posterior
probability:

Ag
best = min

g�gmax

arg max
Ag

i
∈A(g)

Pg(A
g
i |D), (12)

wheregmax is the maximum number of generations,
Ag

i is theith neural tree at generationg, andA(g) is
the population of sizeM :

A(g) = {Ag
i , i = 1, . . . ,M}. (13)

The posterior probabilityPg(A
g
i |D) of neural tree

Ag
i is computed with respect to thegth population:

Pg(A
g
i |D) =

P (D|Ag
i )P (A

g
i )∑M

j=1 P (D|A
g
j )P (A

g
j )
, (14)

whereP (D|Ag
i ) is the likelihood andP (Ag

i ) is the prior
probability of (or degree of belief in)Ag

i . Note that the
posterior probability is approximated by a fixed-size
populationA(g) which is typically a small subset of
the entire neural tree spaceA.

Variation operators are applied to generateL off-
springA′

k, k = 1, . . . , L. Formally, this proceeds in
two steps. First, candidates are generated by sampling
from the proposal distribution

Qg(A′
k|A

g
i ) (15)

The specific form ofQg(·|·) is determined by the
application. Then, each candidate generated by genetic
operators is accepted with probability

ag(A′
k|A

g
i ) = min

{
1,
Pg(A′

k|D)
Pg(A

g
i |D)

}
, (16)

where Pg(A
g
i |D) is computed by Eq. (14) and

Pg(A′
k|D) is the posterior probability ofA′

k estimated
with respect to the current population:

Pg(A′
k|D) =

P (D|A′
k)P (A

′
k)∑M

j=1 P (D|A
g
j )P (A

g
j )
. (17)

If A′
k is rejected in Eq. (16), thenAg

i is retained, i.e.,
A′

k ← Ag
i . Note that this acceptance function does not

exclude the case thatA′
k is generated by crossover from

Ag
i and another parentAg

j ∈ A(g), j �= i. Optionally,
the sampling process can be applied multiple times to
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Fig. 2. Outline of the Bayesian evolutionary algorithm for evolving heterogeneous neural trees.

make a local search in the neighborhood of the current
search point.

After L offspringA′
k, k = 1, . . . , L, are generated,

M of them are selected to build the new population:

A(g + 1) = {Ag+1
i , i = 1, . . . ,M}. (18)

This defines the posterior distributionPg+1(A
g
i |D)

at the next generation. It should be mentioned that this
formulation of offspring selection is intentionally very
general so that it can accommodate various forms of
existing selection schemes, such as(µ, λ) selection [3,
24].

In effect, the evolutionary inference step from gen-
erationg to g + 1 is considered to induce a new fitness
distributionPg+1(A

g
i |D) from priorsP (Ag

i ) through
posterior distributionPg(A

g
i |D) following Bayes for-

mula, using genetic operators. Based on this theoretical
framework we present in the following section imple-
mentational details on how to learn neural tree struc-
tures and how to measure their fitness values to guide
the evolutionary process.

5. Evolving heterogeneous neural trees

5.1. General procedure

To find the best architecture and connection weights
of neural trees consisting of various types of units,
we maintain a populationA of individualsA i at gth
generation

A(g) = {A1, A2, . . . , AM}, (19)

whereM is the population size. The general procedure
for evolving heterogeneous neural trees is summarized
in Fig. 2. Initially,M neural treesA1

i , i = 1, . . . ,M ,

are created. Their raw fitness values are measured
(more details below). Based on these, the posterior
probabilitiesPg(A

g
i |D), i = 1, . . . ,M , are measured

and used as fitness values. Then,L offspring neural
treesA′

k, k = 1, . . . , L, are generated by sampling from
Pg(A

g
i |D) using variation operators. From these,M

neural treesAg+1
i , i = 1, . . . ,M , are selected to con-

stitute the population of generationg + 1. The whole
process is repeated until the termination condition is
met. Optionally, the algorithm can be extended to adopt
the incremental data inheritance mechanism [35]. In
this case, the training data setD starts small and then
is increased as generation goes on (more details in Sec-
tion 5.4). The rationale behind this incremental ap-
proach is that the use of data subsets accelerates the
evolution since it can save the effective time for fitness
evaluation.

The raw fitness of the neural treesAg
i at generation

g is defined as

Fi(g) = E(D|Ag
i ) + α(g)C(Ag

i ), (20)

whereE(D|Ag
i ) andC(Ag

i )) are the error and com-
plexity of the neural tree, computed as

E(D|Ag
i ) =

1
N

N∑
c=1

(yc − fA(xc))
2 (21)

C(Ag
i ) =W (Ag

i ) + U(Ag
i ) + L(Ag

i ). (22)

Here,N is the size of training setD = {(xc,yc)}Ni=1

andW (Ag
i ), U(A

g
i ), andL(Ag

i ) denote respectively
the number of weights, units, and layers. Note that
the parameterα(g) is a function of generationg and
balances the two terms.

This fitness measure can be derived (see Appendix
for more details) from the Bayesian evolutionary frame-
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A 1

B 1

A 2

B 2

Fig. 3. Architecture adaptation by subtree crossover. The subtrees ofA1 andA2 are exchanged to produce two offspringB1 andB2. During
crossover,A1 has grown toB1 in its size and depth, andA2 has shrinked toB2 in its size while the depth remains the same.

work by taking the negative logarithm of the posterior
probability and formulating the problem as a minimiza-
tion problem. That is, under mild assumptions it can
be shown that

Fi(g) = − logP (D|Ag
i )− logP (A

g
i )

= βE(D|Ag
i ) + αC(Ag

i ) (23)

∝ E(D|Ag
i ) + α(g)C(Ag

i ),

where the two parametersβ and α are absorbed
into a single parameterα(g). The adaptive Occam
method [37] can be used to adapt the parameterα(g)
during the run. This method distinguishes two adap-
tation phases. In the phase ofEbest(g − 1) > ε,
the α(g) decreases as the training error falls since
Ebest(g − 1) � 1. Here,ε is a user-specified param-
eter. This encourages fast error reduction at the early
stages of evolution. ForEbest(g − 1) � ε, in con-
trast, asEbest(g) approaches0 the relative importance
of complexity increases due toEbest(g−1)� 1. This
emphasizes stronger complexity reduction at the final
stages to obtain parsimonious solutions.

Note from Eqs (14) and (23) that the posterior proba-
bility Pg(A

g
i |D) can be computed from the raw fitness

valuesFi(g) as follows:

Pg(A
g
i |D) =

P (D|Ag
i )Pg−1(A

g
i )∑M

j=1 P (D|A
g
j )Pg−1(A

g
j )

(24)

=
exp(−Ei(g)− α(g)Ci(g))∑M

j=1 exp(−Ej(g)− α(g)Cj(g))
,

where we used symbolPg−1(A
g
i ) to explicitly denote

that the prior probability is adapted. From this equation,
we see that the complexity term plays the role of the
prior probability. This shows that the update ofα(g) in
the adaptive Occam method has the effect of revising
the priorsPg−1(A

g
i ) since the complexity involves the

revision ofα(g).

5.2. Structure optimization

Structure of neural trees are modified by crossover
and mutation operators. Crossover is performed by ex-
changing subtrees of parent trees as shown in Fig. 3.
Note that crossover results in the change of the topol-
ogy, size, depth, and shape of neural networks. Because
of the closure property of the neural tree representa-
tion, no syntactic restriction is necessary in choosing
the crossover points.

Instead of producing two offspring, one may create
only one, which allows a guided crossover by subtree
evaluation. Several criteria for subtree evaluation have
been proposed in the literature, including the error of
the substree, error difference, frequency of subtrees,
use of the average fitness of population, correlation-
based selection, combination of frequency and error
difference (see [30] and references therein). The local
fitness is measured as a combination of the local error
and size of the subtree, similar to the global fitness
Eq. (20). The use of the size term biases evolution to
choose smaller building blocks against complex ones.
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A B

Fig. 4. Architecture adaptation (growth) by subtree mutation. In this particular example, a single node in neural treeA is replaced by a subtree
of size 4 generated at random to generate an offspringB.

Several heuristics can be applied to make the ar-
chitecture adaptation more “intelligent”. For example,
building blocks (i.e. useful subtrees) in the population
can be discovered and reused during a run. The fitness
of subtrees is computated and if it exceeds a thresh-
old, then the subtree is added to the library of building
blocks. The size of the library is limited. If the library
is full and a candidate is found fitter than the worst in
the library, then the candidate replaces the worst ele-
ment. This allows “forgetting” of less fit substructures
for the sake of better fit building blocks.

Four different types of mutations are distinguished.
First, mutation is used to change the neuron type. This
is performed by randomly choosing a neuron type from
the function setF which is different from the current
neuron type. For instance, a sigma unit can be changed
to a pi unit and vice versa. The second type of mutation
is to change the input unit label. Here, an index value
is randomly chosen from the terminal setT which is
different from the current index value assigned to the
input node. The third kind of mutation is used to modify
subtrees as a whole (Fig. 4). To do this, a node is
chosen at random and its subtree is replaced by a new
subtree that is generated at random. Finally, mutations
can be used to adapt the weight values. This is applied
in conjunction with local search for weight adaptation
as described in the next subsection.

5.3. Weight optimization

Adaptation of weights and biases is performed by
local search. Because of the generality of neuron types,
we use for local search another evolutionary method
that does not make any limiting assumptions, such as
continuity or differentiability. During the local search,
the structure of the network is fixed. The search at-

tempts to find only a rough approximation of local op-
tima since a perfect search would be too expensive,con-
sidering the fact that the network undergoes a structural
change in the next generation.

A local search for a network consists of a number of
LSmax iterations. Each iteration applies only paramet-
ric mutation that perturbs the weight vectorw of A i

with exponential noise, a method used by BGA [24].
If the newly generated networkA ′

i is fitter than the
old oneAi, then the new one is set as the current net-
work and the next iteration continues. The algorithm
is summarized as follows.

Algorithm 5.1 (Local search)

1. Given a neural treeA with weight vectorw t.
2. Generate a new weight vectorw ′ by weight mu-

tation.
3. Take as the weight vector of(t+ 1)-th step:

wt+1

(25)
=

{
w′ w.p. min

{
P (w′|D)
P (wt|D) , 1

}
wt otherwise.

4. If the termination condition not met, sett← t+1
and go to Step 2.

The local search can terminate beforeLSmax itera-
tions if no better weight vector is found for a signifi-
cantly long time. Typically,LSmax was set 10 to 100
in experiments.

A new weight vectorw′ is generated by applying a
gene mutation to each elementwi with the probability
of µweight. The mutation of a gene is performed by
adding a value from the interval[−R,R], where the
rangeR denotes the maximum size of mutation steps.
The new weight valuew′

i ofwi is computed as follows:
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w′
i = wi ±Ri · δ, with δ = 2−K·η

(26)
and η ∈ [0, 1].

The random numberη is chosen from a uniform
distribution over[0, 1]. The density functionφ(Z) and
the distribution functionΦ(Z) for the random variable
Z = 2−K·η are given as:

φ(z) =
1

K · ln(2) · z (27)

Φ(z) = Pr(Z � z) =
∫ z

2−K

φ(u)du
(28)

= 1 +
1

K · ln(2) · ln(z)

The exponential characteristic ofδ = 2−K·η ∈
[2−K , 1] ensures that the mutation step size of max-
imum valueRi is possible, but small steps are more
frequent. The constantK determines the shape of the
exponentional function and thus influences the proba-
bility of choosing large mutation steps: the larger the
valueK, the less the probability of taking large steps.
K also determines the smallest step sizeRi ·2−K . The
exponential mutation is contrasted with the Gaussian
mutation in that very large steps take place with only a
small probability.

Due to the large costs for local search, we have
used various heuristics for applying local search. One
heuristic is to use local search immediately after fitness
evaluation to some portion, say top 50%, of the popu-
lation instead of all its members. Another heuristic is
to adapt the intensity of local search,LSmax, during a
run.

5.4. Data optimization

The importance of training data in learning neural
networks is well known. Selecting a small but repre-
sentative subsets of given training data can improve the
learning speed and solution quality [25]. Similar idea
has also been used in evolutionary algorithms. For ex-
ample, Gathercole and Ross [9] show that fitness eval-
uation in evolving individuals can be significantly ac-
celerated by selecting a subset of fitness cases. The ba-
sic idea is that, other things being equal, the evolution
time can be minimized by reducing the effective data
size for each generation. Typically, evolution starts by
considering a unique fitness case, and additional fit-
ness cases are “gradually” taken into account when the
current population meets some performance criterion.
The method of incremental data inheritance [35] is a
generalization of this approach.

In the evolutionary algorithm with incremental data
inheritance,each individual (in our case, the neural tree)
maintains its own training data set which are evolved
at the same time. Just as tree structures are modified
by crossover, their data sets are mixed by crossover
operation on the data sets as follows.

First, two parent data sets,Dg
i andDg

j , are crossed

to inherit their subsets to two offspring data sets,Dg+1
i

andDg+1
j . Second, the data of parents’ are mixed into

a union set

Dg
i+j =Dg

i ∪D
g
j , (29)

which is then redistributed to two offspringD g+1
i and

Dg+1
j , where the size of offspring data sets is equal to

Ng+1 = Ng + λ, whereλ � 1 is the data increment
size. Thus, the size of data sets monotonically increases
as generation goes on.

The diversity of the training data during inheritance
is maintained by importing some portion of data from
the base set. The import rateri is given as

ri = ρ · (1 − di), 0 � ρ � 1. (30)

whereρ is a constant for import strength. The diversity
di is measured as the ratio of distinctive examples in
the union set:

di =
|Dg

i+j |
|Dg

i |
− 1, 0 � di � 1. (31)

Though the exact factor of speed-up depends on the
availability of the data and its characteristics, our previ-
ous work has shown a speed-up of factor 10 by using in-
cremental data selection in evolving Lisp-like symbolic
programs [35].

6. Simulation results

Experiments have been carried out to compare the
predictive accuracy of neural trees evolved by the
Bayesian evolutionary algorithms with the performance
of standard neural network solutions. For an objec-
tive comparison, we have chosen the benchmark prob-
lems collected by Prechelt [26]. Table 1 shows in the
fourth column the results of the multilayer perceptrons
(MLPs) as reported in [26]. The labels in the second
column (for example, cancer1, cancer2 and cancer3)
denote three data sets generated from the original data
(Cancer data). The third column of the table shows
the results of evolutionary neural trees (ENTs) for the
same data sets. For each specific data set, a total of 10
runs were made. Out of 12 data sets (3 data sets for
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Table 1
Performance comparison of evolutionary neural trees (ENTs) and
multilayer perceptrons (MLPs). The figures are predictive errors,
i.e., misclassification rate measured on the test data. The labels in the
second column (for example, cancer1, cancer2 and cancer3) denote
three different data sets generated from the original data (Cancer
data) by Prechelt [26]. The values for MLPs are as given in [26] and
the values for ENTs are averages over ten runs

Problem Data set ENT MLP

Cancer cancer1 1.714 1.149
cancer2 4.381 5.747
cancer3 3.741 2.299

Diabetes diabetes1 23.95 25.00
diabetes2 23.44 23.44
diabetes3 21.12 21.35

Heart heart1 17.94 20.00
heart2 18.07 14.78
heart3 22.48 23.91

Credit credit1 14.75 13.95
credit2 16.19 18.02
credit3 17.34 18.02

Table 2
Comparison of predictive error (in terms oft-test) of evolutionary
neural trees (ENTs) against multilayer perceptrons (MLPs). The
negativet-values mean better performance of ENTs compared to
MLPs. The larger the absolute value, the more significant the relative
performance

Cancer Diabetes Heart Credit

0.2576 −1.3389 −0.0395 −0.7488

each problem and 4 problems), ENTs achieved 8 times
better results than MLPs.

As the t-test result in Table 2 shows, evolutionary
neural trees (ENTs) achieved better results in predictive
accuracy than multilayer perceptrons (MLPs) for three
problems out of four. ENTs most significantly outper-
form MLPs for the diabetes and credit problems which
are known as difficult for other classifiers. The re-
sults by MLPs shown here are the performances which
were achieved by Prechelt using pre-optimized model
structures. Therefore, the ENT results achieved can
be evaluated as very competitive to the best perfor-
mance achieved by well-engineered conventional neu-
ral network methods. The predictive error for the di-
abetes problem seems big, in its absolute value. Our
comparative analysis shows that this problem is itself
very noisy and difficult for other classifiers as well, in-
cluding MLPs. We found that ENTs’ performance is
still better than other methods. In terms of computa-
tion time, it should be mentioned that the evolution-
ary methods took more time than the backpropagation-
trained MLPs. The additional time is well worthy of
when conventional learning methods are not powerful
enough to find appropriate network structures.

One distinguishing feature of evolutionary search
from conventional learning algorithms for neural net-
works is the use of population. Maintaining multiple
neural trees in a population seems useful since vari-
ous subtrees of potential utility can be reserved. How-
ever, if the population size is too big, the evolutionary
process is slowed down due to large requirements of
resources in memory and computing time.

Another important issue in evolving neural networks
is the fact that the amount of information exchanged
between individuals may affect the solution quality and
speed of the evolutionary design process. For example,
exchange of large subtrees in crossover makes large
steps in the neural architecture space, producing rad-
ically new architectures. Thus, this is a search op-
erator of an “explorative” nature. However, in terms
of stabilization, crossover of small size subtrees (i.e.
“exploitative”) might be more useful.

To analyze the effect of the population size and the
size of subtrees for variation, we evolved neural trees
using Bayesian evolutionary algorithms with varying
parameter values. The problem is the prediction of laser
intensity fluctuations. The data was generated from far-
infraredNH3 laser in a physics laboratory [15]. This
problem was used as a benchmark in the 1992 Santa
Fe time series competition. We considered two differ-
ent classes of BEAs. In the first class, each individ-
ual is evolved by mutation only (both subtree mutation
and weight mutations). Here we use a population of
multiple individuals, but each individual evolves sepa-
rately. We will refer to this as individual-based BEAs
(iBEAs). In the second class of BEAs, the individu-
als evolve as in standard evolutionary algorithms both
by subtree crossover and by mutation (subtree muta-
tion and weight mutation). This will be referred to as
population-based BEAs (pBEAs). In each class, we
varied the size of subtrees in crossover and/or mutation.

Figure 5 summarizes the relationship between the
population size and the size of subtrees for crossover
and mutation. In the figure, iBEA0 (iBEA1 and iBEA2,
respectively) denotes the individual-based BEA with
mutation of subtree depth 0 (1 and 2, respectively),
where 0 denotes mutation with addition/deletion of sin-
gle branches without changing its depth. Similarly,
pBEA1 (iBEA1 and iBEAm, respectively) denotes the
population-based BEA with variation of subtree depth
upto 1 (2 and m, respectively), where m denotes the
height (maximum depth) of the tree. The algorithm
iBEA0 is the most exploitative of the three individual-
based BEAs, while pBEAm is the most explorative
of the population-based BEAs. The experiments have
been performed by varying the population size.



B.-T. Zhang / A Bayesian evolutionary approach to the design and learning of heterogeneous neural trees 83

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 4 8 16 32 64 128 256

N
M

S
E

Population Size

iBEA0
iBEA1
iBEA2

pBEA1
pBEA2
pBEAm

Fig. 5. NMSE values for the laser data. This figure compares the performances of the three individual-based BEAs and the three population-based
BEAs as a function of the population size. The results are averaged over 10 runs. iBEA0 (iBEA1 and iBEA2, respectively) denotes the iBEA with
subtree depth of 0 (1 and 2, respectively), where 0 denotes mutation with addition/deletion of single branches without changing its depth. pBEA1
(iBEA1 and iBEAm, respectively) denotes the pBEA with exchange of subtrees of depth upto 1 (2 and m, respectively), where m denotes the
height or the maximum depth of the tree. It can be seen that the population-based algorithms generally perform better than the individual-based
algorithms for a broad range of population sizes. The figure also shows that the individual-based algorithm with small-step mutations (iBEA0)
performs best for very small (M < 4) populations (though its absolute performance is lower than population-based BEAs with large population
sizes).

Every point in the graphs represents an average value
for 10 runs. The result says that, in small populations
of neural trees, variation of small subtrees is generally
preferable to large ones. This is true of individual-
based (mutation-oriented)variations (iBEAs) as well as
population-based (recombination-intensive) variations
(pBEAs). The results also show that the size of sub-
trees exchanged significantly affects the performance
of the evolutionary neural trees when a small popu-
lation (16 or less in these experiments) is used. In
contrast, the size of subtrees exchanged plays a less
role when they are evolved in a large population (16 or
bigger in these experiments). On the other hand, the
comparison of the performance curves of individual-
based BEAs with those of population-based BEAs in-
dicates that population-based evolution is in general
better. The exception is when the population size is
too small, i.e.M � 4 in these experiments, for which
individual-basedBEAs perform well in evolving neural
trees.

Finally, it is interesting to see the shape of neural trees
actually evolved by the Bayesian evolutionary algo-

rithms. Figure 6 shows an example neural tree evolved
for the laser problem. The tree contains two different
types of neurons (7 summation units and one product
unit) and each unit has a different number of inputs,
which is contrasted with conventional neural network
architectures. It should also be noted that the pi unit
has threex1’s as its input. This effectively represents
a polynomialx3

1 of degree 3 which is impossible to
directly represent in multilayer perceptrons. Discovery
and reuse of such partial structures (building blocks)
are one of the most interesting features that distinguish
evolutionary algorithms from other conventional learn-
ing algorithms for neural networks.

7. Concluding remarks

Optimization of neural networks for particular ap-
plications is important because the learning speed and
solution accuracy are dependent on the network archi-
tecture, i.e. the type and number of units and con-
nections, and the connectivity of units as well as the
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Fig. 6. A heterogeneous neural tree evolved for the time series
prediction problem. This tree contains 7 summation units (circles)
and one product unit (rectangle). The nodes have a variable number
of inputs (variable receptive fields). Some units have duplicated
inputs. In the case of the pi unit, the threex1 ’s represent a polynomial
x3
1 of degree 3 which is not possible to be directly represented in

multilayer perceptrons.

weights. This paper demonstrates the effectiveness of
evolutionary computation for constructing application-
specific neural networks of non-conventional architec-
ture. In our experiments on a suite of benchmark prob-
lems, the heterogeneous neural trees constructed by the
Bayesian evolutionary algorithms outperformed multi-
layer perceptrons 8 times out of 12 data sets. Analysis
of the evolved solutions showed interesting structures
that seem to be appropriate internal representations to
solve the specific problem.

This work also demonstrates the importance of rep-
resentation and fitness functions for successful applica-
tion of evolutionary algorithms in the design and train-
ing of novel neural networks. The enormous size of the
search space prohibits any straightforward evolution-
ary methods from successful application. However,
appropriate representations combined with appropri-
ately chosen fitness functions can transform the origi-
nal, difficult problem to a more manageable one. Our
experimental results indirectly show that neural trees
are an effective representation for evolving a general
class of feedforward architectures. In particular, the
tree structure seems natural for the discovery of non-
trivial building blocks and for the optimization of the
size and shape of neural networks while not destroying
important building blocks [38].

From the evolutionary computation point of view,
neural networks provide an interesting problem that in-
volves optimization of model structures, parameters,

and data sets. This paper demonstrates the usefulness of
the Bayesian evolutionary framework as an integrated
approach to solving this problem. The Bayesian for-
mulation of the neural network design problem allowed
us to develop several principled heuristics to speed up
the evolutionary process. These include the adaptive
fitness functions with complexity penalty and the in-
cremental data inheritance method. Another feature of
the presented method is the use of an evolutionary al-
gorithm for training the weights of the evolved archi-
tecture. This allows us to freely choose the class of
neural architectures to evolve since evolutionary search
does not make any strict assumptions on the geometry
of the search space. Local search seems important in
evolutionary computation that involves continuous pa-
rameter optimization, especially when it is combined
with the optimization of the dimension of the param-
eters as in the design and training of neural networks.
The concept of self-adaptation as adopted in evolution
strategies seems a useful and natural refinement of the
Bayesian evolutionary approach.

Appendix: Derivation of the fitness function

For a convenient implementation of the Bayesian
evolutionary algorithm we take the negative logarithm
of the posterior probabilityPg(A

g
i |D) and use it as the

(raw) fitness function

Fi(g) = − logPg(A
g
i |D), (32)

whereAg
i ∈ A(g) andPg(A

g
i |D) is defined in its most

general case by

Pg(A
g
i |D) =

P (D|Ag
i )P (A

g
i )∑M

j=1 P (D|A
g
j )P (A

g
j )
. (33)

Then the evolutionary process is reformulated as a
minimization process

Ag
best = min

g�gmax

argmin
Ag

i

Fi(g), (34)

where the fitness function is expressed as

Fi(g) = − logP (D|Ag
i )− logP (A

g
i ). (35)

Considering the exponential family of distributions,
we can write the likelihood function in Bayes’ theorem
Eq. (11) in the form

P (D|A) = 1
ZD(β)

exp (−βFD) , (36)

whereFD is an error function,β controls the variance
of the noise, andZD(β) is a normalization factor. For
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example, if we assume that the data has additive zero-
mean Gaussian noise, then the probability of observing
a data valuey for a given input vectorx would be

P (y|x, Ag
i ) =

1
ZD(β)

exp
(37)(

−β
2
(f(x;Ag

i )− y)2
)

whereZD(β) is a normalizing constant. Provided the
data points are drawn independently from this distribu-
tion, we have

P (D|Ag
i ) =

N∏
c=1

P (yc|xc, A
g
i )

(38)
=

1
ZD(β)

exp (−βFD) .

where(xc, yc) ∈ D are training cases andFD is given
as

FD = E(D|Ag
i )

(39)

=
1
2

N∑
c=1

(f(xc;A
g
i )− yc)2.

If we also assume that a Gaussian prior on the archi-
tecture of programAg

i , we have

P (Ag
i ) =

1
ZA(α)

exp (−αFA) (40)

whereZA(α) is a normalizing constant. For example,
FA can be chosen in the form

FA = C(Ag
i ) =

1
2

K∑
k=1

θ2k (41)

whereθk are the parameters defining the neural treeAg
i .

This choice of prior distribution says that we expect the
complexity parameters to be small rather than large,
thus implementing a parsimony pressure.

Substituting Eqs (38) and (40) into Eq. (35), the
fitness function is expressed as

Fi(g) = βFD + αFA
(42)

= βE(Dg
i |A

g
i ) + αC(Ag

i ).

By absorbing the two parametersβ andα into a
single parameterα(g), we can rewrite this as

Fi(g) = E(D|Ag
i ) + α(g)C(Ag

i ) (43)

as is given in Eq. (20).
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