
Genetic Programming with Active Data
Selection

Byoung-Tak Zhang and Dong-Yeon Cho

Artificial Intelligence Lab (SCAI)
Dept. of Computer Engineering

Seoul National University
Seoul 151-742, Korea

{btzhang, dycho}@scai.snu.ac.kr
http://scai.snu.ac.kr/

Abstract. Genetic programming evolves Lisp-like programs rather than
fixed size linear strings. This representational power combined with gen-
erality makes genetic programming an interesting tool for automatic pro-
gramming and machine learning. One weakness is the enormous time re-
quired for evolving complex programs. In this paper we present a method
for accelerating evolution speed of genetic programming by active selec-
tion of fitness cases during the run. In contrast to conventional genetic
programming in which all the given training data are used repeatedly,
the presented method evolves programs using only a subset of given
data chosen incrementally at each generation. This method is applied to
the evolution of collective behaviors for multiple robotic agents. Exper-
imental evidence supports that evolving programs on an incrementally
selected subset of fitness cases can significantly reduce the fitness eval-
uation time without sacrificing generalization accuracy of the evolved
programs.

1 Introduction

Genetic programming (GP) is a method for finding the most fit computer pro-
grams by means of artificial evolution. A population of computer programs are
generated at random. They are evolved to better programs using genetic opera-
tors. The ability of the program to solve the problem is measured as its fitness
value.

The genetic programs are usually represented as trees. A genetic tree con-
sists of elements from a function set and a terminal set. Function symbols ap-
pear as nonterminal nodes. Terminal symbols are used to denote actions taken
by the program. Since Lisp S-expressions can be represented as trees, genetic
programming can, in principle, evolve any Lisp programs. Due to this powerful
expressiveness, GP provides an effective method for automatic programming and
machine learning.

One difficulty in genetic programming is, however, that it requires enormous
computational time. The time for evolution is proportional to the product of
population size, generation number, and the data size needed for fitness eval-

X. Yao et al. (Eds.): SEAL’98, LNCS 1585, pp. 146–153, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Genetic Programming with Active Data Selection 147

uation. Typical population size for GP ranges from a few hundreds to several
thousands [4]. A typical run requires fifty to hundreds of generations. The data
size depends on the application. Fitness evaluation takes the most of evolution
time in GP since it requires programs to be executed against fitness cases.

In this paper we present two methods for reducing computational costs for
genetic programming by evolving programs on a selected subset of given fitness
cases. The idea of active data selection in supervised learning was originally
introduced in 1991 by one of the authors for efficient training of neural networks
[11,7,8]. Motivated by this work Gathercole et al. used training subsets for genetic
programming [1,2]. Our approach is different from that of Gathercole et al. in
that we increase the training set incrementally as generation goes on, rather
than using the same number of fitness cases. The effectiveness of the presented
methods was tested on a multiagent learning problem in which a group of mobile
agents are to transport together a large table to the goal position.

The paper is organized as follows. Section 2 describes the multiagent task.
Section 3 presents the genetic programming approach with active data selection.
Section 4 shows experimental results. Section 5 discusses the result.

2 Evolving Multiagent Strategies Using Genetic
Programming

The table transport problem that will be used in our experiments is an example
of multi-robot applications [9]. In an n × n grid world, a single table and four
robotic agents are placed at random positions, as shown in Figure 1. A specific
location is designated as the destination. The goal of the robots is to transport
the table to the destination in group motion. The robots need to move in herd
since the table is too heavy and large to be transported by single robots.

������
������
������
������
������
������

������
������
������
������
������
������

T

G

Agent

Agent

Agent

Agent

Table

Destination

Obstacle

Visible Range

Fig. 1. The environment for multiagent learning.



148 Byoung-Tak Zhang and Dong-Yeon Cho

Table 1. Terminals and functions of GP-trees for the table transport problem.

Symbol Description

Terminals FORWARD Move one step forward in the current direction
AVOID Check clockwise and make one step in the first direction

that avoids collision
RANDOM-MOVE Move one step in the random direction
TURN-TABLE Make a clockwise turn to the nearest direction of the

table
TURN-GOAL Make a clockwise turn to the nearest direction of the

goal
STOP Stay at the same position

Functions IF-OBSTACLE Check collision with obstacles
IF-ROBOT Check collision with other robots
IF-TABLE Check if the table is nearby
IF-GOAL Check if the table is nearby
PROG2, PROG3 Evaluate two (or three) subtrees in sequence

Each robot i (i = 1, .., Nrobots) is equipped with a control program Ai. If
Ai 6= Aj for i 6= j, then control programs are said to be private. In case of public
control programs, all instances of Ai are constrained to be the same A.

The robots activate Ai’s in parallel to run a team trial. At the beginning
of the trial, the robot locations are chosen at random in the arena. They have
different positions and orientations. During a trial, each robot is are granted a
total of Smax elementary movements. The robot is allowed to stop in less than
Smax steps if it reaches the goal. At the end of the trial, each robot i gets a
fitness value which was measured by summing the contributions from various
factors.

The objective of a GP run is to find a multi-robot algorithm that, when exe-
cuted by the robots in parallel, causes efficient table transport behavior in group.
The terminal and function symbols used for GP to solve this problem are listed
in Table 1. The terminal set consists of six primitive actions: FORWARD, AVOID,
RANDOM-MOVE, TURN-TABLE, TURN-GOAL and STOP. The function set consists of
six primitives: IF-OBSTACLE, IF-ROBOT, IF-TABLE, IF-GOAL, PROG2 and PROG3.
Each fitness case represents a world of 32 by 32 grid on which there are four
robots, 64 obstacles, and the table to be transported. A set of training cases are
used for evolving the programs.

All the robots use the same control program. To evaluate the fitness of robots,
we made a complete run of the program for one robot before the fitness of another
is measured. The fitness value, fij(g), of individual i at generation g against case
j is computed by considering various penalty factors. These include the distance
between the target and the robot, the number of steps moved by the robot, the
number of collisions made by the robot, the distance between starting and final



Genetic Programming with Active Data Selection 149

position of the robot, and the penalty for moving away from other robots. More
details can be found elsewhere [9].

The fitness, Fi(g), of program i at generation g is measured as the average
of its fitness values fij(g) for the cases j in the training set:

Fi(g) =
1
S

S∑

j=1

fij(g) (1)

where S is the number of fitness cases.
In the following section we present the active data selection method for ge-

netic programming.

3 Genetic Programming with Incremental Data Selection

With each program is associated a small set of initial training cases of size n0,
chosen from the base training set D(N) of size N . Individuals are evolved by the
usual genetic programming. In addition, the algorithm has an additional step,
i.e. incremental data inheritance (IDI), in which data sets are evolved.

For the initial data population, a small subset of fitness cases, D(0), is chosen
from the base training set D(N) of size N :

D(0) ⊂ D(N), |D(0)| = n0. (2)

After individuals are evolved by the usual evolutionary process (fitness evalu-
ation, selection, and mating to generate offsprings), a portion of training set,
∆(g), is chosen from the previous candidate set C(g − 1)

∆(g) ⊂ C(g − 1), |∆(g)| = λ, (3)

where C(g − 1) = D(N) − D(g − 1). And it is mixed with the previous training
set to make a new training set D(g) for the next generation

D(g) = D(g − 1) ∪ ∆(g), D(g − 1) ∩ ∆(g) = {}. (4)

That is, the sequence of training sets for GP active is

D(0) ⊂ D(1) ⊂ D(2) ⊂ ... ⊂ D(G) = D(N), (5)

where G is the number of maximum generation.
We use a variant of uniform crossover to produce offspring data from their

parent data. Two parent data sets, Di(g) and Dj(g), are crossed to inherit their
subsets to two offspring data sets, Di(g + 1) and Dj(g + 1). In uniform data
crossover, the data of parents’ are mixed into a union set

Di+j(g) = Di(g) ∪ Dj(g), (6)



150 Byoung-Tak Zhang and Dong-Yeon Cho

g +1

Parents

Offspring

Base Data Set

giD (g)

i+jD    (g)

D (g+1)

j

jiD (g+1)

D (g)

40 40

60

n  = 40

n     = 43

3463

4343

34 6 3

Fig. 2. Uniform data crossover for data inheritance.

which are then redistributed to two offspring:

Di(g + 1) ⊂ Di+j(g)
Dj(g + 1) ⊂ Di+j(g) (7)

where the size of offspring data sets are equal to ng+1 = ng + λ, where λ ≥ 1 is
the data increment size.

To ensure performance improvement, it is important to maintain the diversity
of the training data as generation goes on. The diversity of data set Di(g) is
measured by the ratio of distinctive examples:

di =
|Di+j(g)|
|Di(g)| − 1, 0 ≤ di ≤ 1 (8)

where di = 0 if the parents have the same data and di = 1 if parents have no
common training examples. To maintain the diversity, a portion ρ of the diversity
factor di is used to import examples from the base data set.

ri = ρ · (1 − di), 0 ≤ ρ ≤ 1. (9)

For example, assume that the current parents have data sets, Di(g) and
Dj(g), of size ng = 40 each and |Di+j(g)| = 60. Let the parameters be ρ = 0.3,
λ = 3. Then, we need to generate two training sets of size ng+1 = ng + λ = 43
for the offspring (Figure 2). The diversity is di = |Di+j(g)|

|Di(g)| − 1 = 1.5 − 1 = 0.5
and the import rate is ri = ρ · (1 − di) = 0.3 · (1 − 0.5) = 0.15. The data for
each offspring is generated by randomly choosing 34 examples from Di+j(g), 6
examples from D(N) and again λ = 3 examples from D(N). Figure 2 illustrates
this process.



Genetic Programming with Active Data Selection 151

4 Experimental Results

Experiments have been performed using the parameter values listed in Table
2. The terminal set and function set consist of six primitives, respectively, as
summarized in Table 1. A total of 100 training cases were used for evolving the
programs for standard GP runs. GP runs with active data selection used 10+3g
examples out of the given data set, i.e. n0 = 10, λ = 3, for fitness evaluation.
For all methods, a total of 100 independent worlds were used for evaluating the
generalization performance of evolved programs.

We compared the performance of the GP with active data selection to the
GP with random data selection. Results are shown in Figure 3. GPs with IDI
and incremental random selection (IRS) achieved better than GP without active
selection (GP standard). Figure 4 shows the fitness of three methods with repect
to the total number of evaluations. Since the GP with active data selection uses
variable data size, we calculated the number of evaluations at generation g by
a product of the population size and the data size at generation g. The active
GP methods achieved a speed-up factor of approximately two compared with
that of the standard GP. The results are summarized in Table 3. Though the
GP with active data selection methods used a smaller set of fitness cases, its
training and test performance were slightly better than those of the standard
GP. Though further experiments are necessary for more definite conclusion, it
seems that the active GP has a potential to evolve smaller programs than the
standard GP since small data usually tends to require smaller programs. This
seems interesting from the Occam’s razor principle point of view [10,6].

Table 2. Parameters used in the experiments.

Parameter Value

Population size 100
Max generation 30
Crossover rate 0.9
Mutation rate 0.1

Table 3. Comparison of time and average fitness values (lower is better) for the stan-
dard GP and the GP with active data selection. The values are averaged over ten runs.
Also shown are the standard deviation.

Method Time Average Fitness

Training Test

GP standard 300000 211.21 ± 9.19 225.64 ± 12.05
GP with IRS 170500 209.60 ± 7.67 219.91 ± 13.11
GP with IDI 170500 195.97 ± 8.41 203.39 ± 10.78



152 Byoung-Tak Zhang and Dong-Yeon Cho

150

200

250

300

350

400

450

500

550

600

0 5 10 15 20 25 30

F
itn

es
s

Generation

GP standard
GP with IRS
GP with IDI

Fig. 3. Comparison of fitness values as a function of generation number.

150

200

250

300

350

400

450

500

550

600

0 50000 100000 150000 200000 250000 300000

F
itn

es
s

Number of Evaluations

GP standard
GP with IRS
GP with IDI

Fig. 4. Comparison of fitness values as a function of the number of function evaluations.

5 Conclusions

We have presented a method for accelerating evolution speed of genetic program-
ming by selecting a subset of given fitness cases. Since the fitness evaluation step
is a bottleneck in GP computing time, this method can make an essential con-
tribution to improving the GP performance.



Genetic Programming with Active Data Selection 153

Experimental results have shown that by reducing the fitness cases the evo-
lution speed of GP can be enhanced without loss of generality of the evolved
programs. This is especially true for problem settings in which a large amount
of fitness cases are available. In this case, the active data selection can exploit
the redundancy in the data, while the standard GP blindly re-evaluates all the
fitness cases.

Acknowledgements

This research was supported in part by the Korea Science and Engineering Foun-
dation (KOSEF) under grants 96-0102-13-01-3 and 981-0920-350-2.

References

1. Gathercole, C. and Ross, P. 1994. Dynamic training subset selection for supervised
learning in genetic programming. In Y. Davidor, H.-P. Schwefel, and R. Männer,
(eds.). Parallel Problem Solving from Nature III, Berlin: Springer-Verlag, Pages
312-321.

2. Gathercole, C. and Ross, P. 1997. Small populations over many generations can
beat large populations over few generations in genetic programming. In J.R. Koza
(eds.). Genetic Programming 1997. Cambridge, MA: The MIT Press. Pages 111-
118.

3. Haynes, T., Sen, S., Schoenefeld, D., and Wainwright, R. 1995. Evolving a team,
In Proc. AAAI-95 Fall Symposium on Genetic Programming AAAI Press. Pages
23-30.

4. Koza, John R. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, MA: The MIT Press.

5. Luke, S. and Spector, L. 1996. Evolving teamwork and coordination with genetic
programming. In J.R. Koza (eds.). Proc. First Genetic Programming Conf. Cam-
bridge, MA: The MIT Press. Pages 150-156.

6. Soule, T., Foster, J. A., and Dickinson, J. 1996. Code growth in genetic program-
ming. In J.R. Koza (eds.). Genetic Programming 1996. Cambridge, MA: The MIT
Press. Pages 215-223.

7. Zhang, B. T. 1992. Learning by Genetic Neural Evolution, DISKI Vol. 16, 268
pages, ISBN 3-929037-16-6, Infix-Verlag, St. Augustin/Bonn.

8. Zhang, B. T. 1994. Accelerated learning by active example selection, International
Journal of Neural Systems, 5(1): 67-75.

9. Zhang, B. T. and Cho, D. Y. 1998. Fitness switching: Evolving complex group
behaviors using genetic programming. In Genetic Programming 1998, Madison,
Wisconsin, pp. 431-438, 1998.

10. Zhang, B. T. Mühlenbein, H. 1995. Balancing accuracy and parsimony in genetic
programming. Evolutionary Computation. 3(1) 17-38.

11. Zhang, B. T. and Veenker, G. 1991. Focused incremental learning for improved gen-
eralization with reduced training sets, Proc. Int. Conf. Artificial Neural Networks,
Kohonen, T. et al. (eds.) North-Holland, pp. 227-232.


	Introduction
	Evolving Multiagent Strategies Using Genetic Programming
	Genetic Programming with Incremental Data Selection
	Experimental Results
	Conclusions

