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Abstract. Most existing algorithms for structural learning of Bayesian
networks are suitable for constructing small-sized networks which consist
of several tens of nodes. In this paper, we present a novel approach
to the efficient and relatively-precise induction of large-scale Bayesian
networks with up to several hundreds of nodes. The approach is based on
the concept of Markov blanket and makes use of the divide-and-conquer
principle. The proposed method has been evaluated on two benchmark
datasets and a real-life DNA microarray data, demonstrating the ability
to learn the large-scale Bayesian network structure efficiently.

1 Introduction

Bayesian networks [7] are useful tools for classification and data mining. They are
particulary helpful because of their ability to give an insight into the underlying
nature of the domain that generates the data. Accordingly, Bayesian networks
have been applied to many data mining tasks, such as medical diagnosis [9] and
microarray data analysis [5]. However, there are some obstacles that prevent the
prevalent use of Bayesian networks as data mining tools for real-world problems.
One is the scalability of structural learning algorithms. Most existing algorithms
are inappropriate to learning large-scale Bayesian networks with hundreds of
nodes because of their time and space complexities. In this paper, an efficient
structural learning algorithm for such Bayesian networks is suggested.

There have been two kinds of approaches to learning Bayesian networks from
data. The first is based on dependency analysis among variables. In this ap-
proach, the underlying network structure that produces the data is discovered
by some conditional independence tests on variables [12]. The other approach
solves the structural learning problem in the viewpoint of optimization [3]. Here,
the learning algorithm searches for the network structure which best matches
the data. The fitness of a structure is measured by some scoring metrics (e.g.
the minimum description length (MDL) score and the Bayesian Dirichlet (BD)
score). The search strategy is the core of the second approach. The search space
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is super-exponential in the number of variables of the Bayesian network and the
problem of finding the best structure is known to be NP-hard [1]. So, heuris-
tic methods such as greedy hill-climbing are used in a general way. The greedy
search algorithm [3] is not guaranteed to find the best solution but only a lo-
cal maximum. Nevertheless, the greedy search algorithm has proven to be quite
effective in practice.

Each approach has its own drawbacks. In the former, the conditional indepen-
dence test may produce the incorrect results and mislead the structural learning
process. The latter approach has a tendency to find a dense network structure
which may represent the improper causal relationships among variables without
careful tuning of the scoring metrics (e.g. the proper assignment of prior prob-
abilities for the BD score or the proper representation of the penalizing term
for the MDL score). The exponential time complexity is the problem of both
approaches especially in the case of dealing with hundreds of variables.

The recent work in the approach based on dependency analysis is best de-
scribed in [8]. With the benefit of the concept of Markov blanket, unnecessary
dependency tests are avoided here. The algorithm described in [8] is very ef-
fective for the precise construction of the network structure in polynomial time
with restrictions on the maximum size of the Markov blanket. In addition, its
randomized variant shows an acceptable performance for more general cases.
In the framework of score-based approach, [4] suggested the “sparse candidate”
algorithm. This algorithm reduces the size of search space by restricting the
possible parents of each node before performing the greedy search and makes
it possible to learn the Bayesian network structure with hundreds of variables
efficiently. For finding the optimal Bayesian network structure from data, [13]
suggested an efficient algorithm using the branch and bound technique.

The proposed algorithm in this paper (“local to global search” algorithm)
belongs to the second approach (score-based search). To reduce the global search
space, the local structure around each node is constructed before performing the
greedy search algorithm. Thus, the proposed algorithm is based on the divide-
and-conquer principle. The boundary of the local structure of each node is based
on the concept of Markov blanket.

The paper is organized as follows. In Section 2, the concept of the Markov
blanket structure as local structural boundary is described. The “local to global
search” algorithm is explained in Section 3. We evaluate the proposed algorithm
in comparisons with other structural learning algorithms in Section 4. Finally,
concluding remarks are given in Section 5.

2 The Markov Blanket Structure

In this section, the Markov blanket and the concept of the Markov blanket struc-
ture are described. In the following, X = {X1, ..., Xn} denotes the set of all the
variables of interest. The Markov blanket [10] of Xi, MB(Xi) is the subset of
X − Xi which satisfies the following equation.

P (Xi|X − Xi) = P (Xi|MB(Xi)). (1)
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In other words, MB(Xi) isolates Xi from all the other variables in X−Xi. More
than one Markov blanket for a variable could exist. The minimal Markov blan-
ket is called Markov boundary. In this paper, Markov blanket denotes Markov
boundary. In the Bayesian network structure G, MBG(Xi) is composed of all
the parents of Xi, all the children of Xi, and all the parents of each child of Xi

excluding Xi itself. We designate the subgraph structure consisting of Xi and
MBG(Xi) in G as the Markov blanket structure of Xi. Fig. 1 shows an example
Markov blanket structure of a node in the Bayesian network.

X

Fig. 1. An example Bayesian network structure. The shaded nodes correspond to the
members of MB(X). The subgraph consisting of X and all the shaded nodes is the
Markov blanket structure of X.

3 The “Local to Global Search” Algorithm

Before giving an explanation of the “local to global search” algorithm, we
briefly describe the general greedy search algorithm for structural learning of
the Bayesian network. The general greedy search algorithm proceeds as follows.

– Generate the initial Bayesian network structure G0 (an empty structure or
a randomly generated structure).

– For m = 1, 2, 3, ..., until convergence.
• Among all the possible local changes (insertion of an edge, reversal of an

edge, and deletion of an edge) in Gm−1, the one that leads to the largest
improvement in the score is performed. The resulting graph is Gm.

The stopping criterion is when the score of Gm−1 is equal to the score of Gm.
At each iteration of the greedy search algorithm when learning the Bayesian
network with n nodes, about O(n2) local changes should be evaluated to select
the best one. In the case of hundreds of variables, the cost for these evaluations
becomes very expensive.

The key idea of the “local to global search” algorithm is to reduce the search
space considered in the general greedy search algorithm by constructing the
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Markov blanket structure of each node in advance. The “local to global search”
algorithm proceeds as follows.

– Generate the initial Bayesian network structure G0 (an empty graph).
– Loop for m = 1, 2, 3, ... until convergence.

1. Construct the Markov blanket structure of each node based on Gm−1
and the data D.

2. Merge all the Markov blanket structures into a graph Hm (Hm could
have directed cycles).

3. In Hm, all the edges that do not constitute any directed cycle are fixed
as valid edges in Gm.

4. Perform the general greedy search algorithm to find a good network
structure Gm which is a subgraph of Hm.

In the above algorithm, the general greedy search algorithm (Step 4) and the
construction of the Markov blanket structure of each node (Step 1) are performed
alternately. The stopping criterion of the “local to global search” algorithm is
when the score of Gm−1 is greater than or equal to the score of Gm.

The method of constructing the Markov blanket structure for Xi in Step 1
is as follows.

– For all Xj ⊂ X − Xi − MBGm−1(Xi), the conditional mutual information,
I(Xi; Xj |MBGm−1(Xi)) is calculated to select the candidate members for
the Markov blanket of Xi.

– The general greedy search algorithm is performed on the selected candidate
members and Xi to construct the Markov blanket structure of Xi. When per-
forming the general greedy search algorithm, the Markov blanket structure
of each node in Gm−1 is preserved.

The conditional mutual information [2] measures the dependency between Xi

and Xj given the value of MBGm−1(Xi) and is calculated as follows:

I(Xi; Xj |MBGm−1(Xi))
= I(Xi; Xj ,MBGm−1(Xi)) − I(Xi; MBGm−1(Xi)). (2)

In (2), I(Xi; MBGm−1(Xi)) is unnecessary because it does not depend on Xj

and the only necessary term to select the candidate members is calculated as

I(Xi; Xj ,MBGm−1(Xi)) =
∑

p̂(Xi, Xj ,MBGm−1(Xi))

· log
p̂(Xi, Xj ,MBGm−1(Xi))

p̂(Xi)p̂(Xj ,MBGm−1(Xi))
. (3)

Here, p̂(·) denotes the empirical probability calculated from the data. The selec-
tion of candidate members may be guided by some threshold on the conditional
mutual information value or by some restrictions on the size of the Markov
blanket. Once the candidate members for the Markov blanket are selected, the
general greedy search algorithm searches for the good Markov blanket structure.
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The key point of the “local to global search” algorithm lies in Step 2 and
3. Merging all the Markov blanket structures and fixing the edges that do not
form any directed cycle reduce the great amount of the evaluation cost of the
greedy search algorithm in Step 4. However, fixing the edges found in Step 1
can also lead to the deterioration of the score. And the above algorithm is not
guaranteed to find even the local maxia. The reason is as follows. The greedy
search algorithm usually employs the decomposable scoring metric such as the
BD (Bayesian Dirichlet) score [6] and the MDL (minimum description length)
score [3]. The decomposable score has the property such that,

Score(G, D) = ΣiScore(Xi|PaG(Xi), D), (4)

where G is the Bayesian network structure, D is the data, and PaG(Xi) is the
parents of Xi in G. Because the score of the network can be decomposed into
the score of each node, the increase in the score of each node also increases
the score of the network. In the “local to global search” algorithm, the score of
each node can be degraded through merging the Markov blanket structures into
the global network structure Hm because of the possible changes of its parents.
This is the trade-off between speed and accuracy. However, in many domains,
the initial Bayesian network structure is an empty graph due to the lack of
the domain knowledge and a small number of iterations of the “local to global
search” algorithm could find the appropriate Bayesian network structure rapidly.

Time Complexity

We now describe the time complexity of the “local to global search” algorithm. In
Step 1, in order to determine the candidate members for the Markov blanket of
Xi, the conditional mutual information test is done for all other nodes. This takes
time of O(n·(M ·|Xi|·|Xj |·|MBGm−1(Xi)|)). Here, M is the number of instances
in the data D, and | · | denotes the cardinality of a variable or the set of variables.
|Xi| · |Xj | · |MBGm−1(Xi)| can be regarded as a constant with the appropriate
restrictions on the maximum size of the Markov blanket, k. And the selection of
candidate members for the Markov blanket is done for all the nodes {X1, ..., Xn}.
Therefore, the selection of candidate members for the Markov blanket takes time
of O(n2M). The next is the greedy search procedure to determine the Markov
blanket structure of a node. At each iteration of the greedy search algorithm, the
number of possible local changes is bounded by O(k2). With the assumption of
the moderate maximum size of the Markov blanket (k ≤ 20), the greedy search
procedure takes not so much time.

Step 2 and 3 merges all the Markov blanket structures into a global network
and the time bound is O(n).

In Step 4, the greedy search algorithm evaluates O(n2) local changes at each
iteration. For large n (e.g. n ≥ 800), the conventional greedy search algorithm
takes very much time to search for the good network structure. In the “local to
global search” algorithm, this step takes not so much time because of the greatly
reduced search space through Step 1, 2, and 3.
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4 Experimental Evaluation

To evaluate the performance of the “local to global search” algorithm, two kinds
of artificial datasets and a real-life microarray data were used. In the exper-
iments, we compared the “local to global search” algorithm with the general
greedy search algorithm and the “sparse candidate” algorithm [4] in the respect
of the learning speed and the accuracy of the learned results. As the scoring
metric, the BD (Bayesian Dirichlet) metric with uninformative prior [6] was
adopted. To ensure fairness in the comparison, the same basic module for the
greedy search procedure was used in all three algorithms. The experiments were
performed on a PentiumIII 1GHz machine with 256MB RAM. In the “local to
global search” algorithm, the maximum size of the Markov blanket was restricted
by a constant k.

Artificial Datasets

Table 1 shows the characteristics of two Bayesian networks that produced artifi-
cial datasets. Although these networks have only tens of nodes, the experiments
on the artificial datasets make it possible to compare the accuracy of the al-
gorithms in the respect of reconstructing the precise network structure. Five
artificial datasets of 10000 instances were generated from each of these Bayesian
networks.

Table 2 compares three structural learning algorithms in the respect of the
learning speed. The “sparse candidate” algorithm is much faster than other two
algorithms. The “local to global search” algorithm with k = 5 is faster than the
general greedy search algorithm. However, the “local to global search” algorithm
with k = 10 is not so much faster than the general greedy search algorithm and
even slower on the Hailfinder datasets. This is due to the conditional mutual
information test for the selection of the candidate Markov blanket members in
the “local to global search” algorithm. Most variables in the Hailfinder network
have more categorical values than the variables in the ALARM network. The
Hailfinder network even has a variable which has 11 categorical values. Accord-
ingly, the conditional mutual information tests on the Hailfinder datasets take
extremely long time.

Table 3 compares three structural learning algorithms in the respect of the
accuracy of the learned results (in the likelihood score). The general greedy

Table 1. The characteristics of two Bayesian networks used to generate artificial
datasets. These networks are generally used as benchmarks to test the performance
of structural learning algorithm for Bayesian networks.

Network # of nodes # of edges
ALARM network 37 46
Hailfinder network 56 66
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Table 2. The comparison of the learning speed (in seconds) of three structural learning
algorithms. The left (right) table represents the results on the five datasets generated
from the ALARM (Hailfinder) network. (GG = general greedy search algorithm, SCk
= “sparse candidate” algorithm with maximum candidate parents size of k, LGk =
“local to global search” algorithm with Markov blanket size of k)

GG SC5 SC10 LG5 LG10
A1 143 26 39 42 134
A2 146 30 41 37 172
A3 129 27 39 46 128
A4 150 26 41 45 118
A5 136 27 40 41 133
Avg. 140.8 27.2 40.0 42.2 137.0

GG SC5 SC10 LG5 LG10
H1 352 55 89 191 959
H2 351 56 89 196 1625
H3 370 56 90 276 2015
H4 366 59 88 278 1663
H5 362 57 90 290 1450
Avg. 360.2 56.6 89.2 246.2 1542.4

Table 3. The comparison of the accuracy (in the likelihood score of the learned net-
works) of three structural learning algorithms. The left (right) table represents the
results on the five datasets generated from the ALARM (Hailfinder) network. (GG =
general greedy search algorithm, SCk = “sparse candidate” algorithm with maximum
candidate parents size of k, LGk = “local to global search” algorithm with Markov
blanket size of k)

GG SC5 SC10 LG5 LG10
A1 -9.483 -9.764 -9.577 -9.686 -9.577
A2 -9.524 -9.847 -9.597 -9.610 -9.765
A3 -9.536 -9.847 -9.609 -9.750 -9.630
A4 -9.466 -9.790 -9.546 -9.519 -9.597
A5 -9.541 -9.815 -9.589 -9.639 -9.614

GG SC5 SC10 LG5 LG10
H1 -49.685 -49.762 -49.714 -49.772 -49.813
H2 -49.707 -49.790 -49.742 -49.805 -49.788
H3 -49.695 -49.777 -49.724 -49.764 -49.847
H4 -49.677 -49.751 -49.721 -49.861 -49.789
H5 -49.748 -49.829 -49.779 -49.819 -49.845

search algorithm shows the best accuracy in the respect of the likelihood score
of the learned Bayesian networks. The “sparse candidate” algorithm and the
“local to global search” algorithm are slightly worse than the general greedy
search algorithm. Fig. 2 compares the accuracy of each algorithm in the respect
of the ability of reconstructing the correct network structure. In every case,
the general greedy search algorithm finds the more accurate structures than
other two algorithms. On the ALARM datasets, the performances of the “sparse
candidate” algorithm and the “local to global search” algorithm are comparable.
On the Hailfinder datasets, the “sparse candidate” algorithm shows a slightly
better performance than the “local to global search” algorithm.

DNA Microarray Data

To test the ability of the “local to global search” algorithm for the construction
of large-scale Bayesian networks, the NCI60 dataset [11] was used. The NCI60
dataset consists of 60 human cancer cell lines from 9 kinds of cancers, that
is, colorectal, renal, ovarian, breast, prostate, lung, and central nervous system
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Fig. 2. The average edge errors for the ALARM network datasets (left) and the Hail-
finder network datasets (right). In every case, the general greedy search algorithm finds
the better structures than other two algorithms. On the ALARM datasets, the perfor-
mances of the “sparse candidate” algorithm and the “local to global search” algorithm
are comparable. In the case of the Hailfinder datasets, the “sparse candidate” algo-
rithm shows a slightly better performance than the “local to global search” algorithm.
(GG = general greedy search algorithm, SCk = “sparse candidate” algorithm with
maximum candidate parents size of k, LGk = “local to global search” algorithm with
Markov blanket size of k)

origin cancers, as well as leukaemias and melanomas. On each cell line, the gene
expression pattern is measured by cDNA microarray of 9703 genes including
ESTs. And 1400 chemical compounds were tested on the 60 cell lines. From these
attributes, genes and drugs (chemical compounds) that have more than 3 missing
values across 60 samples as well as unknown ESTs were eliminated for robust
analysis. Consequently, the analyzed NCI60 dataset includes 60 samples with
890 attributes (805 gene expression levels, 84 drug activities, and one additional
variable for the kind of cancer). Hence, the task is to learn the structure of
Bayesian network with 890 nodes. All the attribute values are continuous and
discretized into three categorical values (low, normal, and high) according to
their mean values and the standard deviations across 60 data samples. With
varying threshold values for discretization, three datasets (NCI1, NCI2, and
NCI3) were made.

Table 4 shows the comparison of the “sparse candidate” algorithm and the
“local to global search” algorithm on these datasets. The general greedy search
algorithm was inapplicable to the NCI60 dataset because of its time and space
complexity. The “local to global search” algorithm with k = 5 is the fastest. In
the respect of the accuracy, the “local to global search” algorithm with k = 8
shows a slightly better performance than others.

5 Conclusion

We presented a novel method for structural learning of large-scale Bayesian
networks. It is used as a component learning algorithm in the framework of
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Table 4. The comparison of the learning speed (in seconds) and the accuracy (in the
likelihood score of the learned results) of the “sparse candidate” algorithm and the “lo-
cal to global search” algorithm on the NCI60 dataset. The left (right) table represents
the learning time (the likelihood score). (SCk = “sparse candidate” algorithm with
maximum candidate parents size of k, LGk = “local to global search” algorithm with
Markov blanket size of k)

SC5 SC8 LG5 LG8
NCI1 7568 8678 7123 10987
NCI2 7542 8443 7089 10223
NCI3 7345 8789 7343 11092

SC5 SC8 LG5 LG8
NCI1 -777.35 -777.01 -779.08 -773.12
NCI2 -768.54 -768.34 -769.76 -768.23
NCI3 -787.35 -788.01 -787.20 -787.10

greedy hill-climbing, and avoids many unnecessary computations by constructing
the Markov blanket structure of each node in advance. Since most of the network
structure is learned through economic local search procedures, the space and time
complexities of global search is greatly reduced.

Comparative analysis shows that the proposed method significantly outper-
forms the conventional greedy search algorithm in terms of the learning speed.
The accuracy of the learned results in terms of the likelihood score or the ability
of reconstructing the original structure is not so much degraded compared to
the general greedy search algorithm. One disadvantage of the “local to global
search” algorithm is that the performance is severely degraded when dealing with
the dataset which has variables of large cardinalities. In comparisons with the
state-of-the-art techniques for learning large-scale Bayesian networks (e.g. the
“sparse candidate” algorithm [4]), the proposed method shows a slightly better
performance in the accuracy and the learning speed although the experiments
are confined on one real-life dataset. The choice of the parameter k of the “local
to global search” algorithm does not seem to affect much the accuracy of the
learned results.

As a conclusion, the proposed method is suitable for learning the large-scale
Bayesian network with hundreds of variables efficiently from the data which has
variables with moderate cardinalities (2 ∼ 4).
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