
Molecular Learning of wDNF Formulae

Byoung-Tak Zhang and Ha-Young Jang

Biointelligence Laboratory, Seoul National University, Seoul 151-742, Korea
{btzhang, hyjang}@bi.snu.ac.kr

http://bi.snu.ac.kr/

Abstract. We introduce a class of generalized DNF formulae called
wDNF or weighted disjunctive normal form, and present a molecular al-
gorithm that learns a wDNF formula from training examples. Realized
in DNA molecules, the wDNF machines have a natural probabilistic se-
mantics, allowing for their application beyond the pure Boolean logical
structure of the standard DNF to real-life problems with uncertainty.
The potential of the molecular wDNF machines is evaluated on real-life
genomics data in simulation. Our empirical results suggest the possibil-
ity of building error-resilient molecular computers that are able to learn
from data, potentially from wet DNA data.

1 Introduction

Disjunctive normal form (DNF) is a disjunction of conjunctions of Boolean vari-
ables, such as (x1 AND x2) OR (x1 AND x̄3) OR (x2 AND x3) where xi represent
attributes or binary-valued variables and x̄i are their negations. The conjunc-
tions in the form of (x1 AND x2) are called terms. DNF offers an interesting
structure for representing knowledge in a logical form. For example, any Boolean
function can be represented by a finite set of terms. Although previous research
shows that the k-term DNF, i.e. DNF having k terms at most, is learnable with
attribute noise if the noise rate is known exactly [10, 8], the pure Boolean logical
nature of DNF restricts its application [11].

Here we introduce a generalized form of DNF that is more resilient to noisy
and/or incomplete data thus applicable beyond the pure logical problems. This
weighted DNF or wDNF formula extends DNF twofold. On the conjunction level
the attributes can appear multiple times, e.g. x1x1 = x2

1 as well as x1. This allows
for higher-order attributes, enhancing the expressive power of DNF (We hurry to
mention that logically x1 AND x1 = x1, but this is true only when the variable
does not contain noise). On the disjunction level the terms are permitted to appear
multiple times. Thus the entire formula is a “disjunctive ensemble of conjunctions
of higher-order terms”. The number of copies of the terms represents the weight
of voting in decision making, hence the “weighted DNF”.

We show that the wDNF formulae can be learned from training examples
using DNA computing, resulting in molecular wDNF machines. The probabilis-
tic nature of the computation performed by the molecular wDNF machines is
discussed along with its robustness against uncertainty arising from both in-
ternal (e.g., molecular reaction) and external (e.g., data) sources. The general

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 427–437, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

428 B.-T. Zhang and H.-Y. Jang

setting for learning the wDNF machines is similar to the genetic programming
(GP) framework where the programs for digital computers are evolved using
the principle of natural selection [5, 14, 7]. While GP evolves tree-structured ex-
pressions, here we evolve the wDNF expressions encoded in DNA molecules.
Starting from a random combinatorial library of wDNF expressions our “molec-
ular programming” (MP) method evolves a wDNF formula that best fits to the
learning sample. The potential of the molecular wDNF machines is evaluated
on a DNA-based diagnosis problem. The terms in wDNF in this particular case
represent the conjunctive rules of DNA markers for diagnosing a leukemia. Our
simulation studies demonstrate a robust and highly competitive performance of
the molecular wDNF machines on this real-life data.

The paper is organized as follows. Section 2 presents a formal description
of the wDNF form. Section 3 presents the molecular algorithm for learning
a wDNF formula. Section 4 explains the probabilistic nature of the molecu-
lar wDNF machines based on statistical mechanics of DNA hybridization re-
actions. Section 5 shows the simulation results on the diagnosis problem. We
also evaluate the robustness of wDNF formulae by analyzing wDNF formulae
containing small portions of the complete combinatorial terms. Section 6 draws
conclusions.

2 Weighted Disjunctive Normal Form (wDNF)

Let xi denote an attribute or a Boolean variable, i.e. xi ∈ {0, 1}. A literal consists
of a variable xi or its negation x̄i. The former is called a positive literal and the
latter a negative literal. For notational simplicity, the negative literal can be con-
sidered as a new positive literal by renaming it as xj = x̄i. We shall adopt this
convention in the following, unless otherwise noted. More generally, we consider
the powers of literals and denote a literal of degree r by xr

i , where r is an integer.
Then, a term is defined as a conjunction of the (positive) literals of degree

one:

Ci = (xi1 , xi2 , · · · , xik
, · · · , xini

) = xi1xi2 · · · xik
· · · xini

, (1)

where xik
∈ {x1, x2, ..., xn}. For example, Ci = (xi1 , xi2 , xi3) = x1x4x5 repre-

sents a term consisting of three literals x1, x4 and x5. In general, the number
of variables ni in a term Ci may vary. A disjunctive normal form, DNF, on n
literals is defined as the disjunction of the terms:

DNF = {C1, C2, · · · , Cj , · · · , CN} = C1 + C2 + · · · + Cj + · · · + CN , (2)

where Cj is a term of an arbitrary number of literals out of x1, ..., xn. A k-
term DNF formula is a DNF formula with maximum k terms. For instance,
{x1x2x3, x4x5, x1x3x5} is an example of a 3-term DNF formula on five literals
x1, x2, x3, x4, x5.

The weighted DNF (wDNF) generalizes the DNF in two ways. First, at the
conjunction level the terms can be of higher degree r. Second, at the disjunction

Molecular Learning of wDNF Formulae 429

Fig. 1. A wDNF formula in two different representations: (a) a collection of terms, (b)
a library of DNA molecules corresponding to (a). The DNA code shown is illustration-
purposes only.

level a term can appear w copies. Note that in Eqn. (1) all the literals in DNF
are of maximum degree 1. In wDNF the term is generalized to contain literals
of arbitrary degree. A term of degree r is defined then a conjunction of literals
of the form:

Ci = (xri1
i1

, x
ri2
i2

, · · · , xrik

ik
, · · · , xrini

ini
) = x

ri1
i1

x
ri2
i2

· · · xrik

ik
· · ·xrini

ini
(3)

where xij ∈ {x1, x2, ..., xn} and rij ≤ r, j = 1, ..., ni for fixed r. For example,
Ci = (x2

i1
, x3

i2
, x1

i3
) = x2

i1
x3

i2
x1

i3
= xi1xi1xi2xi2xi2xi3 represents a term of degree

3. The generalized term is satisfied only if every occurrence of the literal is bound
to a “sample” value. There are the designated instantiated “samples” of each
literal.

Using the terms of degree r on n literals, a wDNF formula is defined as:

wDNF = {wiC1, w2C2, · · · , wjCj , · · · , wNCN}
= w1C1 + w2C2 + · · · + wjCj + · · · + wNCN , (4)

where wjCj means wj copies of the term Cj . The coefficient wj is interpreted to
represent the “weight” or strength of the term. Thus, the number of variables
matter in the generalized terms and the wDNF formulae.

To be more concrete, consider a wDNF formula for DNA-based diagnosis
of disease shown in Figure 1(a). In this case the wDNF consists of four terms
C1, ..., C4. A term is said to be “instantiated” if the values of the variables are
bound to specific values. The instantiated term C1 = (x1 = 0, x2 = 1, x2 =
1, y = 1), for example, encodes a diagnosis rule, where y = 1 indicates the label
for disease. The meaning is that a DNA sample is decided positive (y = 1) if it
contains two of the DNA marker 2 (x2 = 1, x2 = 1) and does not contain the

430 B.-T. Zhang and H.-Y. Jang

DNA marker 1 (other variables do not care for this decision). This procedure
can be implemented by hybridization reaction of complementary DNA molecules.
For example, bead separation can be used to check whether the required values
are contained or not. In the following, unless otherwise stated, we shall assume
every term in wDNF has a label variable y in it while other x-variables may
appear or not. This does not lose the generality of the method since y-variable
can be incorporated as an extra x-variable, but it makes the presentation more
readable.

As shown in Figure 1 we encode the value of each variable as a DNA oligomer.
For example, if we assume x1 = 0 be encoded as a 6-mer like ‘AAAACC’, where
‘AAAA’ represents x1 and ‘CC’ denotes the value 0. In this encoding scheme, a
term consisting of 10 literals in total can be encoded as a 60-mer DNA.

3 Learning a wDNF Formula

In this section we describe the molecular algorithm for learning the wDNF for-
mulae. The theoretical backgrounds of this procedure is given in the next section.

The goal is to learn a wDNF formula that best fits to a data set. We assume
the training set D of K labeled DNA samples be given in the form

D = {(xi, yi)}K
i=1

xi = (xi1 , xi2 , ..., xin) ∈ {0, 1}n

yi ∈ {0, 1},

where xi is the sample data and yi is the associated label. In the DNA-marker-
based diagnosis problem, a training example (10101, 1) means the sample is
diagnosed positive (y = 1) if it contains the DNA markers numbered 1, 3, and 5
(x1 = 1, x3 = 1, x5 = 1) and does not contain the rest (x2 = 0, x4 = 0). Figure
1 shows an example in DNA encoding.

To learn the formula we initialize a library of DNA molecules representing
random combinatorial wDNF terms as shown in Figure 2. Given a query pattern
xq we extract from the library all the molecules (terms) that match the query.
The extraction can be implemented using hybridization reaction in the same
way to check which markers exist. The idea is to chop the query sequence into
subsequences for individual variables. These chopped query sequences hybridize
with the wDNF formula in the library. Only the fully double-stranded sequences
are then separated (by selecting out the single-stranded sequences by beads).

These molecules will have class labels from which we decide the majority label
as the class of the query pattern. To perform the matching between xi and xq

for i = 1, ..., N in parallel, we present multiple copies (up to the number of the
library size) of it. That is, we generate a collection

Q = {Δc(x1), Δc(x2), ..., Δc(xn), Δc(y)}, (5)

where Δc(·) denotes copies made by PCR. The class decision is made by com-
paring the number of elements in class 1, N1, with that in class 0, N0:

y∗ = argmax
y

{Ny}, (6)

Molecular Learning of wDNF Formulae 431

Fig. 2. Illustration of the decision-making procedure using the population of DNA-
encoded terms. The query sample is chopped and provided in multiple copies to hy-
bridize in parallel with the terms in the library.

where y takes 0 or 1. The next section discusses a theoretical background for this
rule. For learning, we prepare two collections, M+ and M−, consisting of library
elements that correctly (or incorrectly) classifies the query sample as follows:

– M+ = {(ui, vi)|ui consists of xi for i = 1, ..., n and vi = y}
– M− = {(ui, vi)|ui consists of xi for i = 1, ..., n and vi �= y}.

Now, we describe how the library is revised to learn from newly observed
data. The basic protocol is similar to that described in [13]. The difference is
that the DNA molecules are now describing the generalized terms rather than
simple examples and the whole test tube represents a wDNF formula. As a new
training example (x, y) is given, we extract from the library the terms whose
x-part matching with x. The class y∗ of x is determined by the classification
procedure described above. Then, the matching terms (library patterns) are
modified in their frequency depending on their contribution to the correct or
incorrect classification of x. If the label v of the library pattern (u, v) matching
x is correct, i.e. v = y, it is reproduced:

Lt ← Lt + Δc(M+). (7)

If the label v is incorrect, i.e. v �= y, the matching library pattern is removed
from the library:

Lt ← Lt − Δc(M−). (8)

432 B.-T. Zhang and H.-Y. Jang

– 1. Let the library L0 = {(ui, vi)} contain the initial wDNF formula. Let t = 0.
– 2. Let t ← t + 1.
– 3. Get a training example (x, y) = (x1, x2, ..., xn, y).
– 4. Let Q = {Δc(x1), Δc(x2), ..., Δc(xn), Δc(y)}.
– 5. Classify x using Lt as described in the text and construct the following:

• M+ = {(ui, vi)|ui consists of xi for i = 1, ..., n and vi = y}.
• M− = {(ui, vi)|ui consists of xi for i = 1, ..., n and vi �= y}.

– 6. Update the library L as follows:
• Lt ← Lt−1 + Q.
• Lt ← Lt + Δc(M+).

Optionally, Lt ← Lt − Δc(M−).
– 7. Go to Step 2 if not terminated.

Fig. 3. The molecular programming (MP) procedure for learning a wDNF formula
from examples

Figure 3 summarizes the molecular algorithm for learning a wDNF formula.
Note that the library represents a kind of associative memory learned from data.
In contrast to other molecular computation models of associated memory [2, 3, 6]
proposed so far, the wDNF models contain higher-order patterns. An explicit
probabilistic semantics underlying wDNF is also distinguished from other related
work.

4 The Molecular wDNF Machine as a Probabilistic
Computer

We consider the hybridization reaction between two single-stranded DNA
molecules xi and xq. Without loss of generality we consider xi as the ith el-
ement (a term in wDNF) in the library and xq as a query data. The probability
of the ith term being retrieved by the query pattern is then expressed as Boltz-
mann distribution

P (xi|xq) =
exp (−ΔG(xi|xq)/kBT)

∑
j exp (−ΔG(xj |xq)/kBT)

, (9)

where j runs over the possible states of hybridization at the absolute temperature
T [12]. ΔG is the Gibbs free energy change for the hybridization reaction and
kB is the Boltzmann constant [9].

A direct computation of this probability is difficult. However, we can ap-
proximate this by a Monte Carlo method performed “in vitro”. To do this, we
duplicate the molecules, both xi and xq, let them hybridize, and count the
double-stranded DNA at a fixed temperature T below the melting temperature
Tm. The estimated value is obtained by averaging the values over the sample of
size |S|:

P (xi|xq) ≈ 1
|S|

|S|∑

i=1

ρ(xi,xq), (10)

Molecular Learning of wDNF Formulae 433

where ρ(xi,xq) = 1 if i and q form a double-strand, and ρ(xi,xq) = 0 otherwise.
The approximation can be made arbitrarily accurate by increasing the number
of copies of the molecules.

By generalizing the above idea of “molecular” Monte Carlo simulation into
the collection L of terms, xi, and a collection Q of a excessive number of the
query pattern, xq, we can compute the probability distribution over the term
patterns matching with a query pattern by

PL(X |xq) ≈ 1
|L|

|L|∑

i=1

P (xi|xq), (11)

where we assume that an excessive number of query molecules are put into the
test tube so that all the terms have a fair chance of hybridizing with a query.

We now consider the library representing a k-wDNF, the wDNF formula with
terms consisting only of k variables of degree 1. The ith molecule representing a
termwithk variables canbe consideredas apoint estimatorf

(k)
i (X1, X2, ..., Xn, Y)

of the probability distribution PL(X, Y). The whole library can then be thought of
as a table representing the empirical distribution of the patterns

PL(X, Y) ≈ 1
|L|

|L|∑

i=1

f
(k)
i (X1, X2, ..., Xn, Y), (12)

f
(k)
i (X1, X2, ..., Xn, Y) =

exp (−ΔG(X1, X2, ..., Xn|xq)/kBT)
∑

j exp (−ΔG(X1, X2, ..., Xn|xq)/kBT)
, (13)

where ΔG is the Gibbs free energy change for the hybridization reaction and kB

is the Boltzmann constant.
Given the statistical physical interpretation of DNA hybridization and the

wDNF representation as an empirical probability distribution, the learning pro-
cess can be formulated in a probabilistic framework. The objective of learning is
to find a wDNF or the library L that best predicts the output label y given input
variables x for all possible training data (x, y) in the problem space (X, Y). The
L can be found iteratively by starting with an initial L0 and updating it as new
sample x is observed:

L∗ = argmax
L

P (L|x, y) = arg max
L

P (x, y|L)P (L)
P (x, y)

= argmax
L

P (x, y|L)P (L) = arg max
L

PL(x, y)P (L), (14)

where we used the Bayes rule P (A|B) = P (B|A)P (A)
P (B) .

Once an L is given, the best class label for a query pattern can be determined
by computing the probability of each class conditional on the input pattern x,
and then determining the class whose conditional probability is the highest, i.e.

y∗ = arg max
Y ∈{0,1}

PL(Y |x) = arg max
Y ∈{0,1}

PL(Y,x)
P (x)

, (15)

where we used the relation P (A, B) = P (A|B)P (B) and Y represents the can-
didate classes.

434 B.-T. Zhang and H.-Y. Jang

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

Number of epochs

C
la

ss
fic

at
io

n
ra

tio

Fig. 4. Learning curve of the complete wDNF library. Shown are the average values
for 12 runs. Parameters used are the learning rate = 10−2 and β = 20.

5 Simulation Results and Discussion

We evaluated this method on a real-life medical diagnosis problem in simulation.
Gene expression data are collected from microarray experiments for AML/ALL
leukemia [4]. The microarray data are preprocessed and 10 genes were selected
out of 12600 genes. The training set consists of 120 examples each consisting
of 10 genes plus the associated leukemia class. A 6-fold cross-validation is used
for testing the performance. That is, the whole data set of 120 examples is
partitioned into 6 subsets and a total of six learning trials are executed, where
each trial used a subset of 20 examples for test and the remaining 100 examples
for training. The library was initialized to contain each and every term of wDNF
on the 10 variables. These include (x1 = 0, y = 0), (x1 = 0, y = 1), (x1 = 1, y =
0), (x1 = 1, y = 1), (x1 = 0, x2 = 0, y = 0), (x1 = 0, x2 = 0, y = 1), (x1 = 1, x2 =
0, y = 0), Thus, the total number of the different library elements is

N =
∑10

k=1 10Ck · 2k · 2 = 118, 096,

where 10Ck denotes the number of cases choosing k variables out of 10. For the
simulation of in vitro computation of the wDNF formula, we used the library size
of 118, 096 × 106, i.e. the initial library was generated by copying each element 106

times.Thus, the library consists ofmultiple copies of the same terms andweevolved
the distributions of the terms through the molecular programming procedure.

For decision making, we used a sigmoid squashing function:

f(x) =
1

1 + exp(−βx)
(16)

where β is a constant which reflects the level of noise and sets the decision
boundary. As mentioned in the previous section, we count the number of each

Molecular Learning of wDNF Formulae 435

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

Number of epochs

C
la

ss
ifi

ca
tio

n
ra

tio

Fig. 5. Learning curve of the partial wDNF libraries (average over 12 runs each) con-
taining 10 % of the complete wDNF. Same parameters as in Figure 4.

term which answers positive or negative. Then, the proportion of the positives
and the negatives is calculated. This result is the input to the sigmoid function.
We make a decision probabilistically based on the output of the sigmoid function.

Figure 4 shows the evolution of the performance as learning proceeds. We
presented the positive training example and the negative example alternatingly.
It should be mentioned that one generation consists of the presentation of one
positive and one negative example. The performance was measured at every
generation, i.e. each time a pair of new training examples was observed. One
sweep through the training set constitutes an epoch which is equivalent to 60
generations in this experiment. The best performance of approximately 95%
correct classification on the test data set was obtained in 2 epochs.

It is observed that the total number of the different library elements grows
exponentially as we allow higher-order terms in the wDNF formulae. That is,
if the dimension of the query is high, the total number of the different library
elements grows very rapidly. Considering this, it is interesting to know how the
total number of library elements affects the performance of wDNF formulae.
In order to see how much the performance of wDNF formulae dependends on
the complexity of structures, we ran simulations with partial libraries which are
generated by eliminating some terms from the complete library. The results are
shown in Figure 5. As expected, the wDNF formulae with partial terms perform
less than the complete wDNF formulae. However, the results of the partial li-
braries are still robust. In particular, in the extreme case of the partial library
consisting of only 10 % of the full combinatorial terms achieved approximately
90% in absolute accuracy. Figure 6 compares the performances of different partial

436 B.-T. Zhang and H.-Y. Jang

Fig. 6. The performance of partial libraries in which some portion of libraries are
eliminated after 5 epochs. From left to right 10%, 20%, ..., 90% of whole libraries are
eliminated.

libraries made by knocking out 10 % to 90 %. The performance was measured
in 5 epochs. These results clearly show that the full library is not absolutely
necessary to solve this real-life problem using wDNF formulae, suggesting the
potential for robust decision making in vitro experiments.

6 Conclusion

We introduced the weighted disjunctive normal form (wDNF) as a scheme for
representing probability distributions and presented a method for learning a
wDNF formula from examples. The learning approach is distinguished from
other DNA computing tasks in that the computational result here is a program
or machine that can be reused for solving multiple instances of the problem.
As the genetic programming provides an automatic programming method for
digital computers, the molecular programming provides a method for automatic
programming of molecular computers, in our case a wDNF machine.

The results on the leukemia diagnosis problem show that effective solution is
possible using the wDNF learning. In particular, our simulation results were
competitive to existing state-of-the-art machine learning algorithms. This is
somewhat surprising considering the fact that the terms are random conjunc-
tive combinations of Boolean variables. Our analysis suggests that even though
the individual terms are simple, their collection as a whole, i.e. wDNF, has a
weighted, ensemble representation with redundancy that leads to error-resilient
decision making.

Our results on DNA-based diagnosis also suggest a potential use of the molec-
ular learning method for automatically deriving decision rules from wet DNA
data. Recently, Benenson et al. [1] demonstrate the possibility of in vitro or in
vivo diagnosis. Here the decision rules for diagnosis are hard-coded by the de-
signer. The wDNF learning approach may provide a further step forward into

Molecular Learning of wDNF Formulae 437

this direction of research by providing a potential means for automatically con-
structing the robust decision rules from raw data.

Acknowledgements

This research was supported by the Molecular Evolutionary Computing (MEC)
Project of MICE and by the National Research Laboratory (NRL) Program of
MOST.

References

1. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E. “An autonomous molec-
ular computer for logical control of gene expression,” Nature, 429, 423-429, 2004.

2. Baum, E. B., “Building an associative memory vastly larger than the brain,” Sci-
ence, 268:583-585, 1995.

3. Chen, J. Deaton, R. and Wang, Y.-Z., “A DNA-based memory with in vitro
learning and associative recall,” DNA9, Lecture Notes in Computer Science 2943:
145-156, 2004.

4. Cheok, M.̋. et al., “Treatment-specific changes in gene expression discriminate in
vivo drug response in human leukemia cells,” Nature Genetics, 34:85-90, 2003.

5. Koza, J. R., Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press, Cambridge, MA, USA, 1992.

6. Reif, J.H., LaBean, T.H., Pirrung, M., Rana, V.S., Guo, B., Kingsford, C., Wick-
ham, G.S., “Experimental construction of very large scale DNA databases with
associative search capability,” DNA7, Lecture Notes in Computer Science 2340:
231-247, 2002.

7. Rose, J. A., Deaton, R. J., Hagiya, M., Suyama, A., “A DNA-based in vitro genetic
program”, Journal of Biological Physics, 28:493-498, 2002.

8. Sakakibara, Y., “Solving computational learning problems with Boolean formulae
on DNA computers,” DNA6, Lecture Notes in Computer Science, 2052:220-230,
2001.

9. SantaLucia, J. and Hicks, D., “The thermodynamics of DNA structural motifs,”
Annu. Rev. Biophys. Biomol. Struct., 33:415-440, 2004.

10. Shackelford, G. and Volper, D., “Learning k-DNF with noise in the attributes,”
COLT ’88: Proc. First Annual Workshop on Computational Learning Theory,
97-103, 1988.

11. Valiant, L., “Robust logics”, Proc. ACM Symposium on the Theory of Computing
(STOC 99), pp. 642-651, 1999.

12. Wartel, R.M. and Benight, A.S., “Thermal denaturation of DNA molecules: A
comparison of theory with experiments,” Physics Reports, 126(2):67-107, 1985.

13. Zhang, B.-T. and Jang, H.-Y., “A Bayesian algorithm for in vitro molecular evolu-
tion of pattern classifiers,” Proc. of 10th Int. Meeting on DNA Computing, Milan,
Italy, pp. 294-303, 2004.

14. Zhang, B.-T. and Müehlenbein, H., “Balancing accuracy and parsimony in genetic
programming,” Evolutionary Computation, 3(1):17-38, 1995.

	Introduction
	Weighted Disjunctive Normal Form (wDNF)
	Learning a wDNF Formula
	The Molecular wDNF Machine as a Probabilistic Computer
	Simulation Results and Discussion
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

